Reversible Multi-head Finite Automata Characterize Reversible Logarithmic Space

  • Holger Bock Axelsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7183)

Abstract

Deterministic and non-deterministic multi-head finite automata are known to characterize the deterministic and non- deterministic logarithmic space complexity classes, respectively. Recently, Morita introduced reversible multi-head finite automata (RMFAs), and posed the question of whether RMFAs characterize reversible logarithmic space as well. Here, we resolve the question affirmatively, by exhibiting a clean RMFA simulation of logarithmic space reversible Turing machines. Indirectly, this also proves that reversible and deterministic multi-head finite automata recognize the same languages.

Keywords

Turing Machine Transition Rule Unary Counter Input Tape Track Head 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Axelsen, H.B.: Time Complexity of Tape Reduction for Reversible Turing Machines. In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, Springer, Heidelberg (2012)Google Scholar
  2. 2.
    Axelsen, H.B., Glück, R.: A Simple and Efficient Universal Reversible Turing Machine. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 117–128. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Axelsen, H.B., Glück, R.: What Do Reversible Programs Compute? In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 42–56. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and Development 17(6), 525–532 (1973)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Hartmanis, J.: On non-determinancy in simple computing devices. Acta Informatica 1(4), 336–344 (1972)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Holzer, M., Kutrib, M., Malcher, A.: Multi-head finite automata: Characterizations, concepts and open problems. In: Neary, T., Woods, D., Seda, A.K., Murphy, N. (eds.) Complexity of Simple Programs. EPTCS, vol. 1, pp. 93–107 (2008)Google Scholar
  7. 7.
    Ibarra, O.H.: On two-way multihead automata. J. Comput. and Sys. Sci. 7(1), 28–36 (1973)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kutrib, M., Malcher, A.: Reversible Pushdown Automata. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 368–379. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Lange, K.-J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J. Comput. and Sys. Sci. 60(2), 354–367 (2000)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Morita, K.: Reversible multi-head finite automata and languages accepted by them (extended abstract). In: Wille, R., De Vos, A. (eds.) Proceedings of the 3rd Workshop on Reversible Computation, pp. 25–30. Universiteit Gent (2011)Google Scholar
  11. 11.
    Morita, K.: Two-way reversible multi-head finite automata. Fundamenta Informaticae 110(1-4), 241–254 (2011)MathSciNetMATHGoogle Scholar
  12. 12.
    Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine. Transactions of the IEICE E 72(3), 223–228 (1989)Google Scholar
  13. 13.
    Pin, J.-E.: On the Languages Accepted by Finite Reversible Automata. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 237–249. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  14. 14.
    Yokoyama, T., Axelsen, H.B., Glück, R.: Reversible Flowchart Languages and the Structured Reversible Program Theorem. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 258–270. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Holger Bock Axelsen
    • 1
  1. 1.DIKU, Department of Computer ScienceUniversity of CopenhagenDenmark

Personalised recommendations