Advertisement

Abstract

The article was prepared for the LATA 2012 conference where I will be presenting two one and half hour lectures for a short tutorial on parameterized complexity. Much fuller accounts can be found in the books Downey-Fellows [33, 34], Niedermeier [72], Flum-Grohe [49], the two issues of the Computer Journal [36] and the recent survey Downey-Thilikos [39].

Keywords

Parameterized Complexity Vertex Cover Tree Decomposition Reduction Rule Information Processing Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrahamson, K., Downey, R., Fellows, M.: Fixed-Parameter Intractability II. In: Enjalbert, P., Wagner, K.W., Finkel, A. (eds.) STACS 1993. LNCS, vol. 665, pp. 374–385. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  2. 2.
    Abrahamson, K., Downey, R., Fellows, M.: Fixed-parameter tractability and completeness IV: On completeness for W[P] and PSPACE analogs. Annals of Pure and Applied Logic 73, 235–276 (1995), http://www.mrfellows.net/papers/J31-fpt4-95.pdf MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Abu-Khzam, F.N., Fellows, M., Langston, M.A., Suters, W.H.: Crown structures for vertex cover kernelization. Theory Comput. Syst. 41(3), 411–430 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Abu-Khzam, F.N., Langston, M.A., Shanbhag, P., Symons, C.T.: Scalable parallel algorithms for FPT problems. Algorithmica 45(3), 269–284 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Adler, I., Grohe, M., Kreutzer, S.: Computing excluded minors. In: Proceedings of the of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 641–650. SIAM (2008)Google Scholar
  6. 6.
    Alekhnovich, M., Razborov, A.A.: Resolution is not automatizable unless W[P] is tractable. In: FOCS, pp. 210–219. IEEE Computer Society (2001)Google Scholar
  7. 7.
    Alon, N., Yuster, R., Zwick, U.: Color-coding: a new method for finding simple paths, cycles and other small subgraphs within large graphs. In: Proc. Symp. Theory of Computing (STOC), pp. 326–335. ACM (1994)Google Scholar
  8. 8.
    Bazgan, C.: Schémas d’approximation et complexité paramétrée, Rapport de stage de DEA d’Informatique à Orsay. Tech. rep., Informatique d’Orsay (1995)Google Scholar
  9. 9.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bodlaender, H.L., Downey, R., Fellows, M., Hallett, M.T., Wareham, H.T.: Parameterized complexity analysis in computational biology. Computer Applications in the Biosciences 11, 49–57 (1995)Google Scholar
  11. 11.
    Bodlaender, H.L., Downey, R., Fellows, M., Hermelin, D.: On problems without polynomial kernels. Journal of Computing and System Sciences 75(8), 423–434 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) kernelization. In: FOCS, pp. 629–638. IEEE Computer Society (2009)Google Scholar
  13. 13.
    Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth. The Computer Journal 51, 255–269 (2008)CrossRefGoogle Scholar
  14. 14.
    Bodlaender, H.L., Thomasse, S., Yeo, A.: Analysis of data reduction, transformations give evidence for non-existence of polynomial kernels. Tech. Rep. UU-CS-2008-030, Utrecht University (2008)Google Scholar
  15. 15.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58(4), 171–176 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Cai, L., Chen, J., Downey, R., Fellows, M.: On the parameterized complexity of short computation and factorization. Arch. for Math. Logic 36, 321–337 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Cai, L., Fellows, M., Juedes, D.W., Rosamond, F.A.: The complexity of polynomial-time approximation. Theoretical Computer Science 41, 459–477 (2007)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Cai, L., Juedes, D.W.: Subexponential Parameterized Algorithms Collapse the W-Hierarchy. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 273–284. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Cai, L., Juedes, D.W.: On the existence of subexponential parameterized algorithms. Journal of Computing and Systems Science 67, 789–807 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Cheetham, J., Dehne, F.K.H.A., Rau-Chaplin, A., Stege, U., Taillon, P.J.: Solving large FPT problems on coarse-grained parallel machines. Journal of Computer and Systems Sciences 67(4), 691–706 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D.W., Kanj, I.A., Xia, G.: Tight lower bounds for certain parameterized NP-hard problems. Information and Computation 201, 216–231 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411, 3736–3756 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Chen, Y., Flum, J., Müller, M.: Lower bounds for kernelizations and other preprocessing procedures. Theory Comput. Syst. 48(4), 803–839 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Courcelle, B.: Recognizability and second-order definability for sets of finite graphs. Tech. Rep. I-8634, Universite de Bordeaux (1987)Google Scholar
  25. 25.
    Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic applications. Comput. J. 51(3), 292–302 (2008)CrossRefGoogle Scholar
  26. 26.
    Downey, R.: Parameterized complexity for the skeptic. In: Proc. 18th IEEE Annual Conference on Computational Complexity, pp. 147–169 (2003)Google Scholar
  27. 27.
    Downey, R., Fellows, M.: Fixed parameter tractability and completeness. In: Ambos-Spies, K., Homer, S., Schöning, U. (eds.) Complexity Theory: Current Research, pp. 161–187. Cambridge University Press (1992); congressus Numerantium, 87Google Scholar
  28. 28.
    Downey, R., Fellows, M.: Fixed-parameter intractability. In: Structure in Complexity Theory Conference, pp. 36–49 (1992)Google Scholar
  29. 29.
    Downey, R., Fellows, M.: Fixed-parameter tractability and completeness III: Some structural aspects of the W-hierarchy. In: Ambos-Spies, K., Homer, S., Schöning, U. (eds.) Complexity Theory: Current Research - Proceedings of the 1992 Dagstuhl Workshop on Structural Complexity, pp. 166–191. Cambridge University Press, Cambridge (1993)Google Scholar
  30. 30.
    Downey, R., Fellows, M.: Fixed-parameter tractability and completeness I: Basic theory. SIAM Journal of Computing 24, 873–921 (1995), http://mrfellows.net/papers/J29-completeness1-95.ps CrossRefzbMATHGoogle Scholar
  31. 31.
    Downey, R., Fellows, M.: Fixed-parameter tractability and completeness II: Completeness for W[1]. Theoretical Computer Science A 141, 109–131 (1995), http://mrfellows.net/papers/J30-CompletenessII-95.ps MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Downey, R., Fellows, M.: Parameterized computational feasibility. In: Clote, P., Remmel, J. (eds.) Proceedings of the Second Cornell Workshop on Feasible Mathematics. Feasible Mathematics II, pp. 219–244. Birkhäuser, Boston (1995), http://mrfellows.net/papers/C17-feasibility95.ps
  33. 33.
    Downey, R., Fellows, M.: Parameterized Complexity, 530 pages. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  34. 34.
    Downey, R., Fellows, M.: Fundamentals of Parameterized Complexity. Springer, Heidelberg (in preparation, 2012)Google Scholar
  35. 35.
    Downey, R., Fellows, M., Kapron, B., Hallett, M., Wareham, H.T.: The Parameterized Complexity of Some Problems in Logic and Linguistics. In: Matiyasevich, Y.V., Nerode, A. (eds.) LFCS 1994. LNCS, vol. 813, pp. 89–100. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  36. 36.
    Downey, R., Fellows, M., Langston, M.: Two Special Issue of The Computer Journal Special Issue on Parameterized Complexity. The Computer Journal 51(1 and 3) (2008), http://mrfellows.net/papers/J71-Jforward08.pdf
  37. 37.
    Downey, R., Fellows, M., McCartin, C., Rosamond, F.: Parameterized approximation of dominating set problems. Information Processing Letters 109(1), 68–70 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Downey, R., Fellows, M., Regan, K.W.: Parameterized circuit complexity and the W hierarchy. Theoretical Computer Science A 191(1-2), 97–115 (1998), http://mrfellows.net/papers/DFR98_CircuitComplexity.pdf MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Downey, R., Thilikos, D.M.: Confronting intractability via parameters. Computer Science Review 5, 279–317 (2011)CrossRefzbMATHGoogle Scholar
  40. 40.
    Edmonds, J.: Paths, trees, and flowers. Canad. J. Math. 17, 449–467 (1965), http://www.cs.berkeley.edu/~christos/classics/edmonds.ps MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Eickmeyer, K., Grohe, M., Grüber, M.: Approximation of natural W[P]-Complete minimisation problems is hard. In: Proceedings of the 2008 IEEE 23rd Annual Conference on Computational Complexity, CCC 2008, pp. 8–18. IEEE Computer Society, Washington, DC (2008), http://dx.doi.org/10.1109/CCC.2008.24 CrossRefGoogle Scholar
  42. 42.
    Fellows, M., Langston, M.A.: Nonconstructive advances in polynomial-time complexity. Information Processing Letters 26(3), 155–162 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Fellows, M., Langston, M.A.: Nonconstructive tools for proving polynomial-time decidability. Journal of the Association for Computing Machinery 35(3), 727–739 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Fellows, M., Langston, M.A.: An analogue of the Myhill-Nerode theorem and its use in computing finite-basis characterizations. In: Proceedings of the IEEE Symposium on the Foundations of Computer Science (FOCS), pp. 520–525. IEEE Computer Society (1989)Google Scholar
  45. 45.
    de Fluiter, B.: Algorithms for graphs of small treewidth. Ph.D. thesis, Utrecht University (1970)Google Scholar
  46. 46.
    Flum, J., Grohe, M.: Describing Parameterized Complexity Classes. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 359–371. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  47. 47.
    Flum, J., Grohe, M.: The parameterized complexity of counting problems. In: Proceedings of the 43rd IEEE Symposium on Foundations of Computer Science (FOCS 2002), pp. 538–547. IEEE Computer Society (2002)Google Scholar
  48. 48.
    Flum, J., Grohe, M.: Parametrized complexity and subexponential time. Bulletin of the EATCS 84, 71–100 (2004)zbMATHGoogle Scholar
  49. 49.
    Flum, J., Grohe, M.: Parameterized complexity theory. Texts in theoretical computer science. Springer, Heidelberg (2006), http://books.google.com/books?id=VfJz6hvFAjoC zbMATHGoogle Scholar
  50. 50.
    Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. Journal of Computing and System Sciences 77(1), 91–106 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. J. ACM 48(6), 1184–1206 (2001), http://doi.acm.org/10.1145/504794.504798 MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. In: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, LICS 2002, pp. 215–224. IEEE Computer Society, Washington, DC (2002)Google Scholar
  53. 53.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  54. 54.
    Goldberg, P.W., Golumbic, M.C., Kaplan, H., Shamir, R.: Four strikes against physical mapping of DNA. Journal of Computational Biology 2(1), 139–152 (1993)CrossRefGoogle Scholar
  55. 55.
    Gramm, J., Niedermeier, R., Rossmanith, P.: Exact Solutions for Closest String and Related Problems. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 441–453. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  56. 56.
    Grohe, M.: Generalized Model-Checking Problems for First-Order Logic. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 12–26. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  57. 57.
    Grohe, M., Kreutzer, S.: Methods for algorithmic meta theorems. In: Grohe, M., Makowsky, J. (eds.) Model Theoretic Methods in Finite Combinatorics. Contemporary Mathematics, vol. 558. American Mathematical Society (2011)Google Scholar
  58. 58.
    Hallett, M., Mccartin, C.: A faster FPT algorithm for the maximum agreement forest problem. Theory of Computing Systems 41(3), 539–550 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Hermelin, D., Kratsch, S., Soltys, K., Whalstrom, M., Wu, X.: Hierarchies of inefficient kernelization (to appear)Google Scholar
  60. 60.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? Journal of Computer and System Sciences 63(4), 512–530 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)Google Scholar
  62. 62.
    Karp, R.: Heuristic algorithms in computational molecular biology. Journal of Computer and System Sciences 77(1), 122–128 (2011), http://dx.doi.org/10.1016/j.jcss.2010.06.009 MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with hereditary properties. Theoretical Computer Science 289(2), 997–1008 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Langston, M.A., Perkins, A.D., Saxton, A.M., Scharff, J.A., Voy, B.H.: Innovative computational methods for transcriptomic data analysis: A case study in the use of FPT for practical algorithm design and implementation. The Computer Journal 51(1), 26–38 (2008)CrossRefGoogle Scholar
  65. 65.
    Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. Journal Algorithms 31(2), 335–354 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Marx, D.: Future directions in parameterized complexity (tentative title) (to appear, 2012)Google Scholar
  67. 67.
    McCartin, C.: Parameterized counting problems. Annals of Pure and Applied Logic 138(1-3), 147–182 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Müller, M.: Randomized Approximations of Parameterized Counting Problems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 50–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  69. 69.
    Müller, M.: Valiant-Vazirani Lemmata for various logics. Electronic Colloquium on Computational Complexity (ECCC) 15(063) (2008)Google Scholar
  70. 70.
    Nemhauser, G., Trotter Jr., L.: Vertex packings: Structural properties and algorithms. Mathematical Programming 8, 232–248 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Niedermeier, R.: Invitation to fixed-parameter algorithms. Habilitationschrift, University of Tübingen (2002)Google Scholar
  72. 72.
    Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford lecture series in mathematics and its applications. Oxford University Press (2006), http://books.google.com/books?id=mAA_OkeJxhsC
  73. 73.
    Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-tractable algorithms. Information Processing Letters 73, 125–129 (2000), http://theinf1.informatik.uni-jena.de/publications/ipl00.pdf MathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    Papadimitriou, C.H., Yannakakis, M.: On the complexity of database queries. In: PODS, pp. 12–19. ACM Press (1997); Journal Version in Journal of Computer System Sciences 58, 407–427 (1999)Google Scholar
  75. 75.
    Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research Letters 32(4), 299–301 (2004), http://dx.doi.org/10.1016/j.orl.2003.10.009 MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms 7(3), 309–322 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    Weerapurage, D.P., Eblen, J.D., Rogers, G., Langston, M.A.: Parallel Vertex Cover: A Case Study in Dynamic Load Balancing. In: Chen, J., Ranjan, R. (eds.) Australasian Symposium on Parallel and Distributed Computing (AusPDC 2011). CRPIT, vol. 118, pp. 25–32. ACS, Perth (2011), http://crpit.com/confpapers/CRPITV118Weerapurage.pdf Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rod Downey
    • 1
  1. 1.School of Mathematics, Statistics and Operations ResearchVictoria UniversityWellingtonNew Zealand

Personalised recommendations