On the Parameterized Complexity of Default Logic and Autoepistemic Logic

  • Arne Meier
  • Johannes Schmidt
  • Michael Thomas
  • Heribert Vollmer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7183)


We investigate the application of Courcelle’s Theorem and the logspace version of Elberfeld et al. in the context of the implication problem for propositional sets of formulae, the extension existence problem for default logic, as well as the expansion existence problem for autoepistemic logic and obtain fixed-parameter time and space efficient algorithms for these problems.

On the other hand, we exhibit, for each of the above problems, families of instances of a very simple structure that, for a wide range of different parameterizations, do not have efficient fixed-parameter algorithms (even in the sense of the large class XPnu), unless P=NP.


Boolean Function Parameterized Complexity Tree Decomposition Propositional Formula Existence Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beyersdorff, O., Meier, A., Thomas, M., Vollmer, H.: The Complexity of Propositional Implication. Information Processing Letters 109(18), 1071–1077 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beyersdorff, O., Meier, A., Thomas, M., Vollmer, H.: The complexity of reasoning for fragments of default logic. J. Log. Comput. (2011), doi:10.1093/logcom/exq061Google Scholar
  3. 3.
    Courcelle, B.: Graph rewriting: An algebraic and logic approach. In: Handb. Theor. Comp. Science. Formal Models and Semantics, pp. 193–242. Elsevier (1990)Google Scholar
  4. 4.
    Creignou, N., Meier, A., Thomas, M., Vollmer, H.: The complexity of reasoning for fragments of autoepistemic logic. ACM Transaction on Computational Logic 13(2) (2010),
  5. 5.
    Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of Bodlaender and Courcelle. In: Proc. 51th FOCS. IEEE Computer Society (2010)Google Scholar
  6. 6.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  7. 7.
    Gottlob, G.: Complexity results for nonmonotonic logics. J. Log. Comput. 2(3), 397–425 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of knowledge representation and reasoning. Artif. Intell. 174(1), 105–132 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Moore, R.C.: Semantical considerations on modal logic. Art. Int. 25, 75–94 (1985)CrossRefzbMATHGoogle Scholar
  10. 10.
    Niemelä, I.: Towards Automatic Autoepistemic Reasoning. In: van Eijck, J. (ed.) JELIA 1990. LNCS, vol. 478, pp. 428–443. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  11. 11.
    Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Stockhusen, C.: Anwendungen monadischer Logik zweiter Stufe auf Probleme beschränkter Baumweite und deren Platzkomplexität. Diplomarbeit (2011)Google Scholar
  13. 13.
    Thomas, M., Vollmer, H.: Complexity of non-monotonic logic. Bulletin of the EATCS 102, 53–82 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Arne Meier
    • 1
  • Johannes Schmidt
    • 2
  • Michael Thomas
    • 3
  • Heribert Vollmer
    • 1
  1. 1.Universität HannoverGermany
  2. 2.Université de la MéditerranéeFrance
  3. 3.TWT GmbHGermany

Personalised recommendations