Computing by Observing Insertion

  • Alexander Krassovitskiy
  • Peter Leupold
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7183)

Abstract

Computing by Observing is a theoretical model for computation that tries to formalize the standard setup of experiments in natural sciences. We establish that insertion systems with empty contexts and only one inserted letter suffice in this architecture to accept all recursively enumerable languages. While so far in most cases context-free power was needed, here a sub-regular system leads to computational completeness in this context. Further, we investigate more complicated insertion systems in a model with less powerful observer called Observing Change.

Keywords

Turing Machine Mathematical Linguistics Input String Rule Application Observer System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Small Size Insertion and Deletion Systems. In: Mathematics, Computing, Language, and Life: Frontiers in Mathematical Linguistics and Language Theory. Scientific Applications of Language Methods, vol. 2, pp. 459–524. World Scientific (2010)Google Scholar
  2. 2.
    Alhazov, A., Cavaliere, M.: Computing by Observing Bio-systems: The Case of Sticker Systems. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 1–13. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Cavaliere, M., Jonoska, N., Leupold, P.: Recognizing DNA splicing. Natural Computing 9(1), 157–170 (2009)CrossRefMATHGoogle Scholar
  4. 4.
    Cavaliere, M., Leupold, P.: Evolution and Observation: A New Way to Look at Membrane Systems. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 70–87. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Cavaliere, M., Leupold, P.: Evolution and observation — a non-standard way to generate formal languages. Theoretical Computer Science 321, 233–248 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cavaliere, M., Leupold, P.: Observation of string-rewriting systems. Fundamenta Informaticae 74(4), 447–462 (2006)MathSciNetMATHGoogle Scholar
  7. 7.
    Cavaliere, M., Leupold, P.: Computing by Observing Changes. In: Peper, F., Umeo, H., Matsui, N., Isokawa, T. (eds.) IWNC 2009. PICT, vol. 2, pp. 133–140. Springer, Heidelberg (2010)Google Scholar
  8. 8.
    Dassow, J., Mitrana, V., Salomaa, A.: Operations and language generating devices suggested by the genome evolution. Theor. Comput. Sci. 270(1-2), 701–738 (2002)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Galiukschov, B.S.: Semicontextual grammars. Matem. Logica i Matem. Lingvistika, 38–50 (1981) (in Russian) Google Scholar
  10. 10.
    Kari, L., Păun, G., Thierrin, G., Yu, S.: At the crossroads of DNA computing and formal languages: Characterizing RE using insertion-deletion systems. In: Proceedings of 3rd DIMACS Workshop on DNA Based Computing, Philadelphia, pp. 318–333 (1997)Google Scholar
  11. 11.
    Kari, L., Sosík, P.: On the weight of universal insertion grammars. Theoretical Computer Science 396(1-3), 264–270 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Information and Computation 131(1), 47–61 (1996)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Krassovitskiy, A.: Complexity and Modeling Power of Insertion-Deletion Systems. Ph.D. thesis, Universitat Rovira i Virgili, Tarragona (2011)Google Scholar
  14. 14.
    Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing – New Computing Paradigms. Springer, Heidelberg (1998)MATHGoogle Scholar
  15. 15.
    Salomaa, A.: Formal Languages. Academic Press, New York (1973)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexander Krassovitskiy
    • 1
  • Peter Leupold
    • 1
  1. 1.Research Group on Mathematical Linguistics – GRLMCRovira i Virgili UniversityTarragonaSpain

Personalised recommendations