Advertisement

Nash Equilibria in Concurrent Priced Games

  • Miroslav Klimoš
  • Kim G. Larsen
  • Filip Štefaňák
  • Jeppe Thaarup
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7183)

Abstract

Concurrent game structures model multi-player games played on finite graphs where the players simultaneously choose their moves and collectively determine the next state of the game. We extend this model with prices on transitions for each player. We study pure Nash equilibria in this framework where each player’s payoff is the accumulated price of all transitions until reaching their goal state. We provide a construction of a Büchi automaton accepting all Nash equilibria outcomes and show how this construction can be used to solve a variety of related problems, such as finding pareto-optimal equilibria. Furthermore, we prove the problem of deciding the existence of equilibria to be NP-complete.

Keywords

Nash Equilibrium Move Vector Goal State Local Bound Pure Nash Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49, 672–713 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bouyer, P., Brenguier, R., Markey, N.: Nash Equilibria for Reachability Objectives in Multi-player Timed Games. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 192–206. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Brihaye, T., Bruyère, V., De Pril, J.: Equilibria in Quantitative Reachability Games. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 72–83. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to algorithms, vol. 7, pp. 1162–1171. MIT Press and McGraw-Hill Book Company (1976)Google Scholar
  5. 5.
    Felegyhazi, M., Hubaux, J., Buttyan, L.: Nash equilibria of packet forwarding strategies in wireless ad hoc networks. IEEE Transactions on Mobile Computing, 463–476 (2006)Google Scholar
  6. 6.
    Nash, J.: Equilibrium points in n-person games. Proceedings of the National Academy of Sciences of the United States of America 36(1), 48–49 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ummels, M., Wojtczak, D.: The Complexity of Nash Equilibria in Limit-Average Games. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 482–496. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Valk, R., Jantzen, M.: The residue of vector sets with applications to decidability problems in Petri nets. In: Application and Theory of Petri Nets, pp. 234–258 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Miroslav Klimoš
    • 1
  • Kim G. Larsen
    • 2
  • Filip Štefaňák
    • 1
  • Jeppe Thaarup
    • 2
  1. 1.Faculty of InformaticsMasaryk UniversityCzech Republic
  2. 2.Department of Computer ScienceAalborg UniversityDenmark

Personalised recommendations