Advertisement

Around the Physical Church-Turing Thesis: Cellular Automata, Formal Languages, and the Principles of Quantum Theory

  • Gilles Dowek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7183)

Abstract

The physical Church-Turing thesis explains the Galileo thesis, but also suggests an evolution of the language used to describe nature. It can be proved from more basic principle of physics, but it also questions these principles, putting the emphasis on the principle of a bounded density of information. This principle itself questions our formulation of quantum theory, in particular the choice of a field for the scalars and the origin of the infinite dimension of the vector spaces used as state spaces.

Keywords

State Space Quantum Theory Cellular Automaton Formal Language Computable Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arrighi, P., Dowek, G.: The physical Church-Turing thesis and the principles of quantum theory (to appear)Google Scholar
  2. 2.
    Arrighi, P., Dowek, G.: Operational semantics for formal tensorial calculus. In: Proceedings of QPL, vol. 33, pp. 21–38. Turku Centre for Computer Science General Publication (2004); arXiv pre-print quant-ph/0501150Google Scholar
  3. 3.
    Arrighi, P., Dowek, G.: On the Completeness of Quantum Computation Models. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 21–30. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability. In: QIP 2010, ArXiv preprint: arXiv:0711.3975 (2007)Google Scholar
  5. 5.
    Arrighi, P., Nesme, V., Werner, R.: Unitarity plus causality implies localizability (Full version). Journal of Computer and System Sciences (2010)Google Scholar
  6. 6.
    Arrighi, P., Nesme, V., Werner, R.F.: Quantum Cellular Automata Over Finite, Unbounded Configurations. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 64–75. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Beckman, D., Gottesman, D., Nielsen, M.A., Preskill, J.: Causal and localizable quantum operations. Phys. Rev. A 64(052309) (2001)Google Scholar
  8. 8.
    Bekenstein, J.D.: Universal upper bound to entropy-to-energy ratio for bounded systems. Phys. Rev. D 23, 287–298 (1981)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bell, J.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)Google Scholar
  10. 10.
    Benioff, P.: New gauge fields from extension of space time parallel transport of vector spaces to the underlying number systems. Arxiv preprint arXiv:1008.3134 (2010)Google Scholar
  11. 11.
    Boker, U., Dershowitz, N.: The Church-Turing Thesis Over Arbitrary Domains. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 199–229. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Bournez, O., Campagnolo, M.: A survey on continuous time computations. New computational paradigms. Changing Conceptions of What is Computable, 383–423 (2008)Google Scholar
  13. 13.
    Boykin, P.O., Mor, T., Pulver, M., Roychowdhury, V., Vatan, F.: On universal and fault-tolerant quantum computing: A novel basis and a new constructive proof of universality for Shor’s basis. In: FOCS 1999: Proceedings of the 40th Annual Symposium on Foundations of Computer Science, p. 486. IEEE Computer Society, Washington, DC (1999)Google Scholar
  14. 14.
    Buchholz, D.: Current trends in axiomatic quantum field theory. Lect. Notes Phys, vol. 558, p. 4364 (2000)Google Scholar
  15. 15.
    Collins, P., Graça, D.S.: Effective computability of solutions of ordinary differential equations — The thousand monkeys approach. In: Brattka, V., Dillhage, R., Grubba, T., Klutsch, A. (eds.) 5th International Conference on Computability and Complexity in Analysis. Electronic Notes Theorerical Computer Science, vol. 221, pp. 103–114 (2008)Google Scholar
  16. 16.
    Collins, P., Graça, D.S.: Effective computability of solutions of differential inclusions — The ten thousand monkeys approach. Journal of Universal Computer Science 15(6), 1162–1185 (2009)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Connes, A.: The Witt construction in characteristic one and quantization. Arxiv preprint arXiv:1009.1769 (2010)Google Scholar
  18. 18.
    Copeland, B., Shagrir, O.: Physical Computation: How General are Gandys Principles for Mechanisms? Minds and Machines 17(2), 217–231 (2007)CrossRefGoogle Scholar
  19. 19.
    Dershowitz, N., Gurevich, Y.: A natural axiomatization of the computability and proof of Church’s thesis. The Bulletin of Symbolic Logic 14(3) (2008)Google Scholar
  20. 20.
    Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 400(1985), pp. 97–117 (1818)Google Scholar
  21. 21.
    Dowek, G.: Non determinisitic computation over the real numbers (submited to publication)Google Scholar
  22. 22.
    Dowek, G.: The physical Church thesis as an explanation of the Galileo thesis (submited to publication)Google Scholar
  23. 23.
    Eggeling, T., Schlingemann, D., Werner, R.: Semicausal operations are semilocalizable. EPL (Europhysics Letters) 57, 782 (2002)CrossRefGoogle Scholar
  24. 24.
    Einstein, A.: Physics and Reality. Journal of the Franklin Institute 221(3), 349–382 (1936)CrossRefGoogle Scholar
  25. 25.
    Galilei, G.: Il Saggiatore (1623)Google Scholar
  26. 26.
    Gandy, R.: Church’s thesis and principles for mechanisms. In: The Kleene Symposium. North-Holland (1980)Google Scholar
  27. 27.
    Holevo, A.: Information-theoretical aspects of quantum measurement. Problemy Peredachi Informatsii 9(2), 31–42 (1973)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Montague, R.: Towards a general theory of computability. Synthese 12(4), 429–438 (1960)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Pour-El, M., Richards, J.: Computability in Analysis and Physics. Springer, Heidelberg (1989)CrossRefzbMATHGoogle Scholar
  30. 30.
    Rabin, M.: Computable algebra, general theory and theory of computable fields. Transactions of the American Mathematical Society 95(2), 341–360 (1960)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Schumacher, B., Werner, R.: Reversible quantum cellular automata. ArXiv pre-print quant-ph/0405174 (2004)Google Scholar
  32. 32.
    Schumacher, B., Westmoreland, M.D.: Locality and information transfer in quantum operations. Quantum Information Processing 4(1), 13–34 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Weihrauch, K.: Computable analysis: an introduction. Springer, Heidelberg (2000)CrossRefzbMATHGoogle Scholar
  34. 34.
    Wigner, E.: The unreasonable effectiveness of mathematics in the natural sciences. Communications in Pure and Applied Mathematics 13(1) (1960)Google Scholar
  35. 35.
    Wolfram, S.: A new Kind of Science. Wolfram Media (2002)Google Scholar
  36. 36.
    Ziegler, M.: Physically-relativized Church-Turing hypotheses: Physical foundations of computing and complexity theory of computational physics. Applied Mathematics and Computation 215(4), 1431–1447 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gilles Dowek
    • 1
  1. 1.INRIAParis Cedex 13France

Personalised recommendations