Applying Tree Languages in Proof Theory
Conference paper
Abstract
We introduce a new connection between formal language theory and proof theory. One of the most fundamental proof transformations in a class of formal proofs is shown to correspond exactly to the computation of the language of a certain class of tree grammars. Translations in both directions, from proofs to grammars and from grammars to proofs, are provided. This correspondence allows theoretical as well as practical applications.
Keywords
Simple Proof Production Rule Proof Theory Tree Automaton Tree Language
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Baaz, M., Leitsch, A.: Cut Normal Forms and Proof Complexity. Annals of Pure and Applied Logic 97, 127–177 (1999)MathSciNetCrossRefMATHGoogle Scholar
- 2.Buss, S.R.: On Herbrand’s Theorem. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 195–209. Springer, Heidelberg (1995)CrossRefGoogle Scholar
- 3.Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata: Techniques and Applications (2007), http://www.grappa.univ-lille3.fr/tata (release October 12, 2007)
- 4.Cook, S., Nguyen, P.: Logical Foundations of Proof Complexity. Perspectives in Logic. Cambridge University Press (2010)Google Scholar
- 5.Filiot, E., Talbot, J.-M., Tison, S.: Satisfiability of a Spatial Logic with Tree Variables. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 130–145. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 6.Filiot, E., Talbot, J.-M., Tison, S.: Tree Automata with Global Constraints. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 314–326. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 7.Filiot, E., Talbot, J.M., Tison, S.: Tree Automata With Global Constraints. International Journal of Foundations of Computer Science 21(4), 571–596 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 8.Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39, 176–210, 405–431 (1934-1935)MathSciNetCrossRefMATHGoogle Scholar
- 9.Herbrand, J.: Recherches sur la théorie de la démonstration. Ph.D. thesis, Université de Paris (1930)Google Scholar
- 10.Hetzl, S.: Proofs as Tree Languages (preprint), http://hal.archives-ouvertes.fr/hal-00613713/
- 11.Hetzl, S.: On the form of witness terms. Archive for Mathematical Logic 49(5), 529–554 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 12.Hetzl, S., Leitsch, A., Weller, D.: Towards Algorithmic Cut-Introduction (submitted)Google Scholar
- 13.Jacquemard, F., Klay, F., Vacher, C.: Rigid Tree Automata. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 446–457. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 14.Jacquemard, F., Klay, F., Vacher, C.: Rigid tree automata and applications. Information and Computation 209, 486–512 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 15.Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their Use in Mathematics. Springer, Heidelberg (2008)MATHGoogle Scholar
- 16.Miller, D.: A Compact Representation of Proofs. Studia Logica 46(4), 347–370 (1987)MathSciNetCrossRefMATHGoogle Scholar
- 17.Orevkov, V.P.: Lower bounds for increasing complexity of derivations after cut elimination. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta 88, 137–161 (1979)MATHGoogle Scholar
- 18.Pudlák, P.: The Lengths of Proofs. In: Buss, S. (ed.) Handbook of Proof Theory, pp. 547–637. Elsevier (1998)Google Scholar
- 19.Schwichtenberg, H., Troelstra, A.S.: Basic Proof Theory. Cambridge University Press (1996)Google Scholar
- 20.Shallit, J., Breitbart, Y.: Automaticity I: Properties of a Measure of Descriptional Complexity. Journal of Computer and System Sciences 53, 10–25 (1996)MathSciNetCrossRefMATHGoogle Scholar
- 21.Shallit, J., Wang, M.W.: Automatic complexity of strings. Journal of Automata, Languages and Combinatorics 6(4), 537–554 (2001)MathSciNetMATHGoogle Scholar
- 22.Shoenfield, J.R.: Mathematical Logic, 2nd edn. AK Peters (2001)Google Scholar
- 23.Statman, R.: Lower bounds on Herbrand’s theorem. Proceedings of the American Mathematical Society 75, 104–107 (1979)MathSciNetMATHGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2012