Advertisement

Computational Complexity of Rule Distributions of Non-uniform Cellular Automata

  • Alberto Dennunzio
  • Enrico Formenti
  • Julien Provillard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7183)

Abstract

ν-CA are cellular automata which can have different local rules at each site of their lattice. Indeed, the spatial distribution of local rules completely characterizes ν-CA. In this paper, sets of distributions sharing some interesting properties are associated with languages of bi-infinite words. The complexity classes of these languages are investigated providing an initial rough classification of ν-CA.

Keywords

Cellular Automaton Cellular Automaton Product Graph Local Rule Cellular Automaton Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures. J. Comput. Syst. Sci. 6(5), 448–464 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berstel, J., Perrin, D.: Theory of Codes. Academic Press (1985)Google Scholar
  3. 3.
    Cattaneo, G., Dennunzio, A., Formenti, E., Provillard, J.: Non-Uniform Cellular Automata. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 302–313. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Chaudhuri, P., Chowdhury, D., Nandi, S., Chattopadhyay, S.: Additive Cellular Automata Theory and Applications, vol. 1. IEEE Press (1997)Google Scholar
  5. 5.
    Dennunzio, A., Formenti, E., Provillard, J.: Local rule distributions, language complexity and non-uniform cellular automata. ArXiv e-prints (2011)Google Scholar
  6. 6.
    Dennunzio, A., Formenti, E., Provillard, J.: Non-uniform cellular automata: classes, dynamics, and decidability. ArXiv e-prints (2011)Google Scholar
  7. 7.
    Devaney, R.L.: An Introduction to Chaotic Dynamical Systems, 2nd edn. Westview Pr., Short Disc (2003)Google Scholar
  8. 8.
    Durand, B., Formenti, E., Róka, Z.: Number-conserving cellular automata I: decidability. Theoretical Computer Science 299(1-3), 523–535 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Durand, B., Formenti, E., Varouchas, G.: On Undecidability of Equicontinuity Classification for Cellular Automata. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 117–128. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Fúster-Sabater, A., Caballero-Gil, P., Pazo-Robles, M.E.: Application of Linear Hybrid Cellular Automata to Stream Ciphers. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 564–571. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Gerlee, P., Anderson, A.R.A.: Stability analysis of a hybrid cellular automaton model of cell colony growth. Phys. Rev. E 75, 051911 (2007)CrossRefGoogle Scholar
  12. 12.
    Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Theory of Computing Systems 3(4), 320–375 (1969)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Addison-Wesley (2006)Google Scholar
  14. 14.
    Kari, J.: Reversibility and surjectivity problems of cellular automata. Journal of Computer and System Sciences 48, 149–182 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic Theory and Dynamical Systems 17(2), 417–433 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lind, D., Marcus, B.: An introduction to symbolic dynamics and coding. Cambridge University Press, New York (1995)CrossRefzbMATHGoogle Scholar
  17. 17.
    Litovsky, I., Staiger, L.: Finite acceptance of infinite words. Theoretical Computer Science 174, 1–21 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Manzini, G., Margara, L.: A complete and efficiently computable topological classification of d-dimensional linear cellular automata over Zm. Theoretical Computer Science 221(1-2), 157–177 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Moore, E.F.: Machine models of self-reproduction. In: Proceedings of Symposia in Applied Mathematics, vol. 14, pp. 17–33 (1962)Google Scholar
  20. 20.
    Myhill, J.: The converse of Moore’s garden-of-Eden theorem. Proceedings of the American Mathematical Society 14(4), 685–686 (1963)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Nivat, M., Perrin, D.: Ensembles reconnaissables de mots biinfinis. In: STOC, pp. 47–59. ACM (1982)Google Scholar
  22. 22.
    Perrin, D., Pin, J.E.: Infinite Words, Pure and Applied Mathematics, vol. 141. Elsevier (2004)Google Scholar
  23. 23.
    Sutner, K.: De Bruijn graphs and linear cellular automata. Complex Systems 5, 19–30 (1991)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alberto Dennunzio
    • 2
  • Enrico Formenti
    • 1
  • Julien Provillard
    • 1
  1. 1.Laboratoire I3SUniversité Nice-Sophia AntipolisSophia AntipolisFrance
  2. 2.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano–BicoccaMilanoItaly

Personalised recommendations