Advertisement

Catalytic Petri Nets Are Turing Complete

  • Gabriel Ciobanu
  • G. Michele Pinna
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7183)

Abstract

In this paper we introduce a class of Petri nets, called catalytic Petri nets, and a suitable firing strategy where transitions are fired only when they use tokens from specific places, called catalytic places. By establishing a one-to-one relationship with catalytic membrane systems, we can prove that the class of catalytic Petri nets with at least two catalytic places is Turing complete.

Keywords

Membrane System Evolution Step Membrane Computing Maximal Parallelism Reachable Marking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrigoroaiei, O., Ciobanu, G.: Flattening the Transition P Systems with Dissolution. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 53–64. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Alberts, B., Johnson, A., Walter, P., Lewis, J.: Molecular Biology of the Cell. Garland Publishing, New York (2002)Google Scholar
  3. 3.
    Burkhard, H.D.: On Priorities of Parallelism. In: Salwicki, A. (ed.) Logic of Programs 1980. LNCS, vol. 148, pp. 86–97. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  4. 4.
    Burkhard, H.D.: Ordered firing in Petri nets. Elektronische Informationsverarbeitung und Kybernetik 17(2/3), 71–86 (1981)Google Scholar
  5. 5.
    Ciardo, G.: Petri Nets with Marking-Dependent Arc Cardinality: Properties and Analysis. In: Valette, R. (ed.) ICATPN 1994. LNCS, vol. 815, pp. 179–198. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  6. 6.
    Ciobanu, G., Pan, L., Păun, G., Pérez-Jiménez, M.J.: P systems with minimal parallelism. Theoretical Computer Science 378(1), 117–130 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ciobanu, G., Pérez-Jiménez, M.J., Păun, G. (eds.): Applications of Membrane Computing. Natural Computing Series. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  8. 8.
    Dufourd, C., Finkel, A., Schnoebelen, P.: Reset Nets Between Decidability and Undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Esparza, J.: Decidability and complexity of Petri net problems - an introduction. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–428. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Esparza, J., Nielsen, M.: Decidability issues for Petri nets - a survey. Bulletin of the EATCS 52, 244–262 (1994)zbMATHGoogle Scholar
  11. 11.
    Finkel, A., Geeraerts, G., Raskin, J.F., Begin, L.V.: On the ω-language expressive power of extended Petri nets. Theor. Comput. Sci. 356(3), 374–386 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Freund, R., Kari, L., Oswald, M., Sosík, P.: Computationally universal P systems without priorities: two catalysts are sufficient. Theoretical Computer Science 330(2), 251–266 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Geeraerts, G.: On the expressive power of Petri nets with transfer arcs vs. Petri nets with reset arcs. Tech. Rep. 572, Université Libre de Bruxelles (2007)Google Scholar
  14. 14.
    Hack, M.: Decidability Questions for Petri Nets. In: Outstanding Dissertations in the Computer Sciences. Garland Publishing, New York (1975)Google Scholar
  15. 15.
    Jantzen, M., Zetzsche, G.: Labeled Step Sequences in Petri Nets. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 270–287. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Kleijn, J., Koutny, M.: Petri nets and membrane computing. In: Păun, G., Rozenberg, G., Salomaa, A. (eds.) The Oxford Handbook of Membrane Computing, pp. 389–412. Oxford University Press (2010)Google Scholar
  17. 17.
    Kleijn, J., Koutny, M., Rozenberg, G.: Towards a Petri Net Semantics for Membrane Systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 292–309. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Kosaraju, S.R.: Decidability of reachability in vector addition systems (preliminary version). In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pp. 267–281. ACM (1982)Google Scholar
  19. 19.
    Montanari, U., Rossi, F.: Contextual nets. Acta Informatica 32(6) (1995)Google Scholar
  20. 20.
    Păun, G.: Membrane Computing. An Introduction. Natural Computing Series. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    Păun, G., Rozernberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gabriel Ciobanu
    • 1
  • G. Michele Pinna
    • 2
  1. 1.Institute of Computer ScienceRomanian AcademyIaşiRomania
  2. 2.Dipartimento di Matematica e InformaticaUniversità di CagliariItaly

Personalised recommendations