Measuring Information in Timed Languages

  • Eugene Asarin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7183)


Timed automata and timed languages [1] constitute a beautiful discovery that opened new perspectives to automata and language theory, as well as new applications to computer-aided verification. However the theory of timed regular languages is far from being achieved. Seven years ago, in [2], I argued that developing such a theory constituted an important research challenge, and I sketched a research program in this direction. Unfortunately, when listing research tasks on timed languages I have overlooked one interesting topic: measuring size of and information content in such languages. Catching up this omission became the focus of my research and the theme of this talk.


Information Content Volume Versus Size Measure Spectral Radius Formal Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Asarin, E.: Challenges in timed languages: from applied theory to basic theory (column: Concurrency). Bulletin of the EATCS 83, 106–120 (2004)zbMATHGoogle Scholar
  3. 3.
    Asarin, E., Degorre, A.: Volume and Entropy of Regular Timed Languages: Analytic Approach. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 13–27. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Asarin, E., Degorre, A.: Volume and Entropy of Regular Timed Languages: Discretization Approach. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 69–83. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Asarin, E., Degorre, A.: Two size measures for timed languages. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS. LIPIcs, vol. 8, pp. 376–387. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  6. 6.
    Basset, N.: Dynamique Symbolique et Langages Temporisés. Master’s thesis, Master Parisien de la Recherche Informatique (2010)Google Scholar
  7. 7.
    Basset, N., Asarin, E.: Thin and Thick Timed Regular Languages. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 113–128. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eugene Asarin
    • 1
  1. 1.LIAFA – Université Paris Diderot and CNRSFrance

Personalised recommendations