Volumetric Modeling Electromechanics of the Heart

  • Hongda Mao
  • Linwei Wang
  • Ken C. L. Wong
  • Huafeng Liu
  • Pengcheng Shi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7085)


Heart is an electromechanical coupled organ, thus it is important to integrate electrical and mechanical functions when building a computational model of the heart. The existing models either treat electrical and mechanical functions separately, or follow a so-called ”one-way” electromechanical coupling. However, electrical and mechanical functions of the heart are depended on each other, and realistic simulation results can only be achieved when such coupled relationship is considered. In this paper, we propose a generic model to simulate electromechanics of the heart that takes both electromechanical coupling and mechanoelectrical feedback into account. The model contains four components: cardiac electrophysiological model, electromechanical coupling, cardiac mechanics model and mechanoelectrical feedback. We report numerical simulations of a cube to provide an insight of the electromechanical coupled behavior of our model. Experiments have also been performed on a biventricular heart which present physiological plausible values, such as transmembrane potential (TMP) maps and strain maps.


Electromechanical Coupling Volumetric Modeling Electromechanical Activity Biventricular Heart Mechanoelectrical Feedback 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nash, M., Panfilov, A.: Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Progress in Biophysics and Molecular Biology 85, 501–522 (2004)CrossRefGoogle Scholar
  2. 2.
    Goktepe, S., Kuhl, E.: Electromechanics of the heart: a unified approach to the strongly coupled excitation-contraction problem. Computational Mechanics 45, 227–243 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Traynova, N., Constantino, J., Gurev, V.: Models of stretch-activated ventricular arrhythmias. Journal of Electrocardiology 43, 479–485 (2010)CrossRefGoogle Scholar
  4. 4.
    Kerckhoffs, R., Healy, S., Usyk, T., Mcculloch, A.: Computational methods for cardiac electromechanics. Proceedings of IEEE 94, 769–783 (2006)CrossRefGoogle Scholar
  5. 5.
    Wang, L., Zhang, H., Wong, K., Liu, H., Shi, P.: Physiological-model-constrained noninvasive reconstruction of volumetric myocardial transmembrane potentials. IEEE Transaction on Biomedical Engineering 57, 296–315 (2010)CrossRefGoogle Scholar
  6. 6.
    Plank, G., Romero, D., Sebastian, R., Wong, K.C.L., Zhang, H., Ayache, N., Frangi, A.F., Shi, P., Smith, N.P., Camara, G.A.W.O., Sermesant, M., Lamata, P., Wang, L., Pop, M., Relan, J., Craene, M.D., Delingette, H., Liu, H., Niederer, S., Pashaei, A.: Inter-model consistency and complementarity: Learning from ex-vivo imaging and electrophysiological data towards an integrated understanding of cardiac physiology. Progress in Biophysics and Molecular Biology (accepted, 2011)Google Scholar
  7. 7.
    Sermesant, M., Delingette, H., Ayache, N.: An electromechanical model of the heart for image analysis and simulation. IEEE Transactions on Medical Imaging 25, 612–625 (2006)CrossRefGoogle Scholar
  8. 8.
    Chapelle, D., Fernández, M.A., Gerbeau, J.-F., Moireau, P., Sainte-Marie, J., Zemzemi, N.: Numerical Simulation of the Electromechanical Activity of the Heart. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 357–365. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Wong, K.C.L., Wang, L., Zhang, H., Shi, P.: Physiological Fusion of Functional and Structural Data for Cardiac Deformation Recovery. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 159–166. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Aliev, R., Panfilov, A.: A simple two-variable model of cardiac excitation. Chaos, Solitions Fractals 7(3), 293–301 (1996)CrossRefGoogle Scholar
  11. 11.
    Niederer, S., Smith, N.: An improved numerical method for strong coupling of excitation and contraction models in the heart. Progress in Biophysics and Molecular Biology 96, 90–111 (2008)CrossRefGoogle Scholar
  12. 12.
    Rudy, Y., Ackerman, M., Bers, D., Clancy, C., Houser, S., London, B., McCulloch, A., Przywara, D., Rasmusson, R., Solaro, R., Trayanova, N., Wagoner, D., Varro, A., Weiss, J., Lathrop, D.: Systems approach to understanding electromechanical activity in the human heart: a national heart, lung, and blood institute workshop summary. Circulation 118, 1202–1211 (2008)CrossRefGoogle Scholar
  13. 13.
    Bathe, K.: Finite element procedures. Prentice Hall, Englewood Cliffs (1996)zbMATHGoogle Scholar
  14. 14.
    Dolbow, J., Belytschko, T.: An tntroduction to programming the meshless element free galerkin method. Archives of Computational Methods in Engineering 5(3), 207–241 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Smith, N., Buist, M., Pullan, A.: Altered t wave dynamics in a contracting cardiac model. The Journal of Cardiovascular Electrophysiology 14, 203–209 (2003)CrossRefGoogle Scholar
  16. 16.
    Physionet/computers in cardiology challenge 2007: electrocardiographic imaging of myocardial infarction, vol.2 (2007),
  17. 17.
    Nash, M.: Mechanics and material properties of the heart using an anatomically accurate mathematical model, vol.2, Ph.D dissertation, University of AucklandGoogle Scholar
  18. 18.
    Cerqueira, M., Weissman, N., Dilsizian, V., Jacobs, A., Kaul, S., Laskey, W., Pennell, D., Rumbergen, J., Ryan, T., Verani, M.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statment for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association. Circulation 105, 539–542 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hongda Mao
    • 1
  • Linwei Wang
    • 1
  • Ken C. L. Wong
    • 2
  • Huafeng Liu
    • 3
  • Pengcheng Shi
    • 1
  1. 1.Computational Biomedicine LaboratoryRochester Institute of TechnologyUSA
  2. 2.ASCLEPIOS Research Project, INRIASophia AntipolisFrance
  3. 3.State Key Laboratory of Modern Optical InstrumentationZhengJiang UniversityChina

Personalised recommendations