Approximate XML Query Processing

  • Giovanna Guerrini
Part of the Intelligent Systems Reference Library book series (ISRL, volume 36)


The standard XML query languages, XPath and XQuery, are built on the assumption of a regular structure with well-defined parent/child relationships between nodes and exact conditions on nodes. Full text extensions to both languages allow Information Retrieval (IR) style queries over text-rich documents. Important applications exist for which the purely textual information is not predominant and documents exhibit a structure, that is however not relatively regular. Thus, approaches to relax both content and structure conditions in queries on XML document collections and to rank results according to some measure to assess similarity have been proposed, as well as processing approaches to efficiently evaluate them. In the chapter, the various dimensions of query relaxation and alternative approaches to approximate processing will be discussed.


Query Processing Partial Match Inverted List Tree Edit Distance Twig Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistructured Data and XML. Morgan Kaufmann (1999)Google Scholar
  2. 2.
    Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated Ranking of Database Query Results. In: CIDR (2003)Google Scholar
  3. 3.
    Amer-Yahia, S., Cho, S., Srivastava, D.: Tree Pattern Relaxation. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 496–513. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Amer-Yahia, S., Koudas, N., Marian, A., Srivastava, D., Toman, D.: Structure and Content Scoring for XML. In: VLDB, pp. 361–372 (2005)Google Scholar
  5. 5.
    Amer-Yahia, S., Lakshmanan, L.V.S., Pandit, S.: FleXPath: Flexible Structure and Full-Text Querying for XML. In: SIGMOD Conference, pp. 83–94 (2004)Google Scholar
  6. 6.
    Amer-Yahia, S., Lalmas, M.: XML Search: Languages, INEX and Scoring. SIGMOD Record 35(4), 16–23 (2006)CrossRefGoogle Scholar
  7. 7.
    Augsten, N., Barbosa, D., Böhlen, M.H., Palpanas, T.: TASM: Top-k Approximate Subtree Matching. In: ICDE, pp. 353–364 (2010)Google Scholar
  8. 8.
    Augsten, N., Böhlen, M.H., Dyreson, C.E., Gamper, J.: Approximate Joins for Data-Centric XML. In: ICDE, pp. 814–823 (2008)Google Scholar
  9. 9.
    Augsten, N., Böhlen, M.H., Gamper, J.: Approximate Matching of Hierarchical Data Using pq-Grams. In: VLDB, pp. 301–312 (2005)Google Scholar
  10. 10.
    Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press / Addison-Wesley (1999)Google Scholar
  11. 11.
    Bruno, N., Koudas, N., Srivastava, D.: Holistic Twig Joins: Optimal XML Pattern Matching. In: SIGMOD Conference, pp. 310–321 (2002)Google Scholar
  12. 12.
    Cao, H., Qi, Y.Q., Candan, K.S., Sapino, M.L.: Feedback-driven Result Ranking and Query Refinement for Exploring Semi-structured Data Collections. In: EDBT, pp. 3–14 (2010)Google Scholar
  13. 13.
    Chaudhuri, S., Ramakrishnan, R., Weikum, G.: Integrating DB and IR Technologies: What is the Sound of One Hand Clapping? In: CIDR, pp. 1–12 (2005)Google Scholar
  14. 14.
    Damiani, E., Lavarini, N., Marrara, S., Oliboni, B., Pasini, D., Tanca, L., Viviani, G.: The APPROXML Tool Demonstration. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 753–755. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Deshpande, A., Ives, Z.G., Raman, V.: Adaptive Query Processing. Foundations and Trends in Databases 1(1), 1–140 (2007)zbMATHCrossRefGoogle Scholar
  16. 16.
    Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algorithms for Middleware. J. Comput. Syst. Sci. 66(4), 614–656 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998)Google Scholar
  18. 18.
    Goldman, R., Widom, J.: DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases. In: VLDB, pp. 436–445 (1997)Google Scholar
  19. 19.
    Gou, G., Chirkova, R.: Efficiently Querying Large XML Data Repositories: A Survey. IEEE Trans. Knowl. Data Eng. 19(10), 1381–1403 (2007)CrossRefGoogle Scholar
  20. 20.
    Grust, T., van Keulen, M., Teubner, J.: Staircase Join: Teach a Relational DBMS to Watch its (Axis) Steps. In: VLDB, pp. 524–525 (2003)Google Scholar
  21. 21.
    Guerrini, G., Mesiti, M., Bertino, E.: Structural Similarity Measures in Sources of XML Documents. In: Darmont, J., Boussaid, O. (eds.) Processing and Managing Complex Data for Decision Support, pp. 247–279. IDEA Group (2006)Google Scholar
  22. 22.
    Guerrini, G., Mesiti, M., Sanz, I.: An Overview of Similarity Measures for Clustering XML Documents. In: Vakali, A., Pallis, G. (eds.) Web Data Management Practices: Emerging Techniques and Technologies, IDEA Group (2007)Google Scholar
  23. 23.
    Guha, S., Jagadish, H.V., Koudas, N., Srivastava, D., Yu, T.: Approximate XML Joins. In: SIGMOD Conference, pp. 287–298 (2002)Google Scholar
  24. 24.
    Hung, E., Deng, Y., Subrahmanian, V.S.: TOSS: An Extension of TAX with Ontologies and Similarity Queries. In: SIGMOD Conference, pp. 719–730 (2004)Google Scholar
  25. 25.
    Ide, N., Véronis, J.: Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art. Computational Linguistics 24(1), 1–40 (1998)Google Scholar
  26. 26.
    Ilyas, I.F., Beskales, G., Soliman, M.A.: A Survey of Top-k Query Processing Techniques in Relational Database Systems. ACM Comput. Surv. 40(4) (2008)Google Scholar
  27. 27.
    Jones, K.S., Walker, S., Robertson, S.E.: A Probabilistic Model of Information Retrieval: Development and Comparative Experiments - Part 1 and Part 2. Inf. Process. Manage. 36(6), 779–840 (2000)CrossRefGoogle Scholar
  28. 28.
    Lalmas, M.: XML Retrieval. Synthesis Lectures on Information Concepts, Retrieval, and Services. Morgan & Claypool Publishers (2009)Google Scholar
  29. 29.
    Lalmas, M., Trotman, A.: XML Retrieval. In: Encyclopedia of Database Systems, pp. 3616–3621 (2009)Google Scholar
  30. 30.
    Lau, H.L., Ng, W.: A Multi-Ranker Model for Adaptive XML Searching. VLDB J. 17(1), 57–80 (2008)CrossRefGoogle Scholar
  31. 31.
    Lovins, J.B.: Development of a Stemming Algorithm. Mechanical Translation and Computational Linguistics 11, 22–31 (1968)Google Scholar
  32. 32.
    Marian, A., Amer-Yahia, S., Koudas, N., Srivastava, D.: Adaptive Processing of Top- k Queries in XML. In: ICDE, pp. 162–173 (2005)Google Scholar
  33. 33.
    Marian, A., Schenkel, R., Theobald, M.: Ranked XML Processing. In: Encyclopedia of Database Systems, pp. 2325–2332 (2009)Google Scholar
  34. 34.
    Navarro, G.: A Guided Tour to Approximate String Matching. ACM Comput. Surv. 33(1), 31–88 (2001)CrossRefGoogle Scholar
  35. 35.
    Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill (1983)Google Scholar
  36. 36.
    Sanz, I., Llavori, R.B., Mesiti, M., Guerrini, G.: ArHeX: Flexible Composition of Indexes and Similarity Measures for XML. In: ICDE Workshops, pp. 281–284 (2007)Google Scholar
  37. 37.
    Sanz, I., Mesiti, M., Guerrini, G., Llavori, R.B.: Fragment-Based Approximate Retrieval in Highly Heterogeneous XML Collections. Data Knowl. Eng. 64(1), 266–293 (2008)CrossRefGoogle Scholar
  38. 38.
    Sanz, I., Mesiti, M., Guerrini, G., Llavori, R.B.: Flexible Multi-Similarity XML Data Querying with Top-k Processing. Tech. rep., Universitat Jaume I (2009)Google Scholar
  39. 39.
    Schlieder, T.: Schema-Driven Evaluation of Approximate Tree-Pattern Queries. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 514–532. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  40. 40.
    Tai, K.C.: The Tree-to-Tree Correction Problem. J. ACM 26(3), 422–433 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Tatarinov, I., Viglas, S., Beyer, K.S., Shanmugasundaram, J., Shekita, E.J., Zhang, C.: Storing and Querying Ordered XML using a Relational Database System. In: SIGMOD Conference, pp. 204–215 (2002)Google Scholar
  42. 42.
    Tekli, J., Chbeir, R., Yétongnon, K.: An Overview on XML Similarity: Background, Current Trends and Future Directions. Computer Science Review 3(3), 151–173 (2009)CrossRefGoogle Scholar
  43. 43.
    Theobald, M., Bast, H., Majumdar, D., Schenkel, R., Weikum, G.: TopX: Efficient and Versatile Top-k Query Processing for Semistructured Data. VLDB J. 17(1), 81–115 (2008)CrossRefGoogle Scholar
  44. 44.
    W3C: XML Path Language (XPath) 2.0 (2007),
  45. 45.
    W3C: XQuery 1.0: An XML Query Language (2007),
  46. 46.
    W3C: XQuery and XPath Full Text 1.0 (2010),
  47. 47.
    Xin, D., Han, J., Chang, K.C.C.: Progressive and Selective Merge: Computing Top-k with ad-hoc Ranking Functions. In: SIGMOD Conference, pp. 103–114 (2007)Google Scholar
  48. 48.
    Zhang, K., Shasha, D.: Simple Fast Algorithms for the Editing Distance Between Trees and Related Problems. SIAM J. Comput. 18(6), 1245–1262 (1989)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Università di GenovaGenovaItaly

Personalised recommendations