Approximate Queries for Spatial Data

  • Alberto Belussi
  • Barbara Catania
  • Sara Migliorini
Part of the Intelligent Systems Reference Library book series (ISRL, volume 36)


Approximation techniques for spatial data traditionally concern data capture and data representation issues. On the other hand, more recently developed approximation techniques refer to the query to be executed and not to data representation as in the the past monolithic Geographic Information Systems and for this reason they are called query-based approximation techniques. The aim of this chapter is to survey such approximation techniques and to identify the issues that from our point of view have still to be investigated to complete the picture. In particular, we observe that most of the proposed approaches for spatial approximate queries rely on the usage of quantitative, i.e., metric (distance-based), information. On the other hand, only few of them take into account qualitative information, e.g., topological and cardinal spatial relations. Based on this consideration, we provide new types of queries relying on qualitative relations and we discuss how the query processing algorithms already defined for metric relations can be extended to cope with qualitative information.


Query Processing Ranking Function Query Point Spatial Object Skyline Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acharya, S., Gibbons, P.B., Poosala, V., Ramaswamy, S.: Join Synopses for Approximate Query Answering. In: SIGMOD Conference, pp. 275–286 (1999)Google Scholar
  2. 2.
    Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated Ranking of Database Query Results. In: CIDR (2003)Google Scholar
  3. 3.
    Azevedo, L.G., Zimbrão, G., de Souza, J.M.: Approximate Query Processing in Spatial Databases Using Raster Signatures. In: GeoInfo, pp. 53–72 (2006)Google Scholar
  4. 4.
    Babcock, B., Chaudhuri, S., Das, G.: Dynamic Sample Selection for Approximate Query Processing. In: SIGMOD Conference, pp. 539–550 (2003)Google Scholar
  5. 5.
    Bakalov, P., Hadjieleftheriou, M., Tsotras, V.J.: Time Relaxed Spatiotemporal Trajectory Joins. In: GIS, pp. 182–191 (2005)Google Scholar
  6. 6.
    Belussi, A., Boucelma, O., Catania, B., Lassoued, Y., Podestà, P.: Towards Similarity-Based Topological Query Languages. In: Grust, T., et al. (eds.) EDBT 2006. LNCS, vol. 4254, pp. 675–686. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Belussi, A., Catania, B., Podestà, P.: Using Qualitative Information in Query Processing over Multiresolution Maps. In: Spatial Data on the Web: Modeling and Management, pp. 159–186. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Belussi, A., Catania, B., Podestà, P.: Topological Operators: a Relaxed Query Processing Approach. GeoInformatica 16(1), 67–110 (2012)CrossRefGoogle Scholar
  9. 9.
    Berchtold, S., Böhm, C., Keim, D.A., Kriegel, H.P.: A Cost Model For Nearest Neighbor Search in High-Dimensional Data Space. In: PODS, pp. 78–86 (1997)Google Scholar
  10. 10.
    Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE, pp. 421–430 (2001)Google Scholar
  11. 11.
    Bruns, H.T., Egenhofer, M.J.: Similarity of Spatial Scenes. In: 7th Symposium on Spatial Data Handling, pp. 31–42 (1996)Google Scholar
  12. 12.
    Butenuth, M., Gösseln, G.V.: Integration of Heterogeneous Geospatial Data in a Federated Database. ISPRS Journal of Photogrammetry and Remote Sensing 62(5), 328–346 (2007), Theme Issue: Distributed Geoinformatics - From Sensors to Systems,, doi:10.1016/j.isprsjprs.2007.04.003CrossRefGoogle Scholar
  13. 13.
    Catania, B., Guerrini, G.: Towards Adaptively Approximated Search in Distributed Architectures. In: Vakali, A., Jain, L.C. (eds.) New Directions in Web Data Management 1. Studies in Computational Intelligence, vol. 331, pp. 171–212. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Chakrabarti, K., Garofalakis, M.N., Rastogi, R., Shim, K.: Approximate Query Processing using Wavelets. VLDB J 10(2-3), 199–223 (2001)zbMATHGoogle Scholar
  15. 15.
    Clementini, E., Felice, P.D., van Oosterom, P.: A Small Set of Formal Topological Relationships Suitable for End-User Interaction. In: SSD, pp. 277–295 (1993)Google Scholar
  16. 16.
    Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Closest Pair Queries in Spatial Databases. In: SIGMOD Conference, pp. 189–200 (2000)Google Scholar
  17. 17.
    Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Distance Join Queries of Multiple Inputs in Spatial Databases. In: Kalinichenko, L.A., Manthey, R., Thalheim, B., Wloka, U. (eds.) ADBIS 2003. LNCS, vol. 2798, pp. 323–338. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Multi-Way Distance Join Queries in Spatial Databases. Geoinformatica 8, 373–402 (2004)CrossRefGoogle Scholar
  19. 19.
    Corral, A., Vassilakopoulos, M.: Approximate Computation of Distance-Based Queries. In: Spatial Databases, pp. 130–154 (2005)Google Scholar
  20. 20.
    Corral, A., Vassilakopoulos, M.: On Approximate Algorithms for Distance-Based Queries using R-trees. Comput. J. 48(2), 220–238 (2005)CrossRefGoogle Scholar
  21. 21.
    Egenhofer, M.J., Al-Taha, K.K.: Reasoning about Gradual Changes of Topological Relationships. In: Spatio-Temporal Reasoning, pp. 196–219 (1992)Google Scholar
  22. 22.
    Egenhofer, M.J., Franzosa, R.D.: Point Set Topological Relations. Int. Journal of Geographical Information Systems 5, 161–174 (1991)CrossRefGoogle Scholar
  23. 23.
    Egenhofer, M.J., Mark, D.M.: Modeling Conceptual Neighborhoods of Topological Line-Region Relations. Int. Journal of Geographical Information Systems 9(5), 555–565 (1995)CrossRefGoogle Scholar
  24. 24.
    Goodchild, M.F.: Measurement-based GIS. In: Shi, W., Fisher, P., Goodchild, M. (eds.) Spatial Data Quality, pp. 5–17. Taylor and Francis (2002)Google Scholar
  25. 25.
    Goyal, R.K., Egenhofer, M.J.: Consistent Queries over Cardinal Directions across Different Levels of Detail. In: DEXA Workshop, pp. 876–880 (2000)Google Scholar
  26. 26.
    Guo, X., Ishikawa, Y., Gao, Y.: Direction-Based Spatial Skylines. In: MobiDE, pp. 73–80 (2010)Google Scholar
  27. 27.
    Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: SIGMOD Conference, pp. 47–57 (1984)Google Scholar
  28. 28.
    Hjaltason, G.R., Samet, H.: Distance Browsing in Spatial Databases. ACM Trans. Database Syst. 24(2), 265–318 (1999)CrossRefGoogle Scholar
  29. 29.
    Hsueh, Y.-L., Zimmermann, R., Yang, M.-H.: Approximate Continuous K Nearest Neighbor Queries for Continuous Moving Objects with Pre-Defined Paths. In: Akoka, J., Liddle, S.W., Song, I.-Y., Bertolotto, M., Comyn-Wattiau, I., van den Heuvel, W.-J., Kolp, M., Trujillo, J., Kop, C., Mayr, H.C. (eds.) ER Workshops 2005. LNCS, vol. 3770, pp. 270–279. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    Ilyas, I.F., Beskales, G., Soliman, M.A.: A Survey of Top-k Query Processing Techniques in Relational Database Systems. ACM Comput. Surv. 40(4), 11:1–11:58 (2008)Google Scholar
  31. 31.
    Inc., O.G.C.: OpenGIS Implementation Standard for Geographic information - Simple feature access - Part 1: Common architecture. OpenGIS Implementation Standard (2010)Google Scholar
  32. 32.
    Jhingran, A.: Enterprise Information Mashups: Integrating Information, Simply. In: VLDB, pp. 3–4 (2006)Google Scholar
  33. 33.
    Kadlag, A., Wanjari, A.V., Freire, J.-L., Haritsa, J.R.: Supporting Exploratory Queries in Databases. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp. 594–605. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  34. 34.
    Kossmann, D., Ramsak, F., Rost, S.: Shooting Stars in the Sky: An Online Algorithm for Skyline Queries. In: VLDB, pp. 275–286 (2002)Google Scholar
  35. 35.
    Lee, D.: Query Relaxation for XML Model. Ph.D. thesis. University of California (2002)Google Scholar
  36. 36.
    Mamoulis, N., Papadias, D.: Multiway Spatial Joins. ACM Trans. Database Syst. 26(4), 424–475 (2001)zbMATHCrossRefGoogle Scholar
  37. 37.
    Mishra, C., Koudas, N.: Interactive Query Refinement. In: EDBT, pp. 862–873 (2009)Google Scholar
  38. 38.
    Navratil, G., Franz, M., Pontikakis, E.: Measurement-Based GIS Revisited. In: 7th AGILE Conference on Geographic Information Science, pp. 771–775 (2004)Google Scholar
  39. 39.
    Papadias, D., Arkoumanis, D.: Approximate Processing of Multiway Spatial Joins in Very Large Databases. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 179–196. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  40. 40.
    Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP Operations in Spatial Data Warehouses. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 443–459. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  41. 41.
    Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive Skyline Computation in Database Systems. ACM Trans. Database Syst. 30(1), 41–82 (2005)CrossRefGoogle Scholar
  42. 42.
    Papadias, D., Theodoridis, Y., Sellis, T.K., Egenhofer, M.J.: Topological Relations in the World of Minimum Bounding Rectangles: A Study with R-trees. In: SIGMOD Conference, pp. 92–103 (1995)Google Scholar
  43. 43.
    Peltzer, J.B., Teredesai, A., Reinard, G.: AQUAGP: Approximate QUery Answers Using Genetic Programming. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 49–60. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  44. 44.
    Podestà, P.: Query Processing and Analysis of Multi-resolution Spatial Data in Distributed Architecture. Ph.D. thesis. University of Genoa, Italy (2010)Google Scholar
  45. 45.
    Radwan, M., Alvarez, L., Onchaga, R., Morales, J.: The Changing Role of the Geo-Data Infrastructure: from a Data Delivery Network to a Virtual Enterprise Supporting Complex Services. In: ISPRS 2004 Photogrammetry and Remote Sensing, pp. 194–199 (2004)Google Scholar
  46. 46.
    Rigaux, P., Scholl, M., Voisard, A.: Spatial Databases - with Applications to GIS. Elsevier (2002)Google Scholar
  47. 47.
    Rote, G.: Computing the Minimum Hausdorff Distance Between Two Point Sets on a Line Under Translation. Inf. Process. Lett. 38(3), 123–127 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Roussopoulos, N., Kelley, S., Vincent, F.: Nearest Neighbor Queries. In: SIGMOD Conference, pp. 71–79 (1995)Google Scholar
  49. 49.
    Shan, J., Zhang, D., Salzberg, B.: On Spatial-Range Closest-Pair Query. In: SSTD, pp. 252–269 (2003)Google Scholar
  50. 50.
    Sharifzadeh, M., Shahabi, C.: The Spatial Skyline Queries. In: VLDB, pp. 751–762 (2006)Google Scholar
  51. 51.
    Sharifzadeh, M., Shahabi, C., Kazemi, L.: Processing Spatial Skyline Queries in both Vector Spaces and Spatial Network Databases. ACM Trans. Database Syst. 34(3), 14:1–14:45 (2009)Google Scholar
  52. 52.
    Silva, Y.N., Aref, W.G., Ali, M.H.: The Similarity Join Database Operator. In: ICDE, pp. 892–903 (2010)Google Scholar
  53. 53.
    Skiadopoulos, S., Giannoukos, C., Sarkas, N., Vassiliadis, P., Sellis, T.K., Koubarakis, M.: Computing and Managing Cardinal Direction Relations. IEEE Trans. Knowl. Data Eng. 17(12), 1610–1623 (2005)CrossRefGoogle Scholar
  54. 54.
    Son, W., Lee, M.-W., Ahn, H.-K., Hwang, S.-w.: Spatial Skyline Queries: An Efficient Geometric Algorithm. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 247–264. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  55. 55.
    Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient Progressive Skyline Computation. In: VLDB, pp. 301–310 (2001)Google Scholar
  56. 56.
    Tian, Y., Lee, K.C.K., Lee, W.C.: Finding Skyline Paths in Road Networks. In: GIS, pp. 444–447 (2009)Google Scholar
  57. 57.
    Xia, T., Zhang, D., Kanoulas, E., Du, Y.: On Computing Top-t Most Influential Spatial Sites. In: VLDB, pp. 946–957 (2005)Google Scholar
  58. 58.
    Yao, B., Li, F., Hadjieleftheriou, M., Hou, K.: Approximate String Search in Spatial Databases. In: ICDE, pp. 545–556 (2010)Google Scholar
  59. 59.
    Yiu, M.L., Dai, X., Mamoulis, N., Vaitis, M.: Top-k Spatial Preference Queries. In: ICDE, pp. 1076–1085 (2007)Google Scholar
  60. 60.
    Zhang, J., Mamoulis, N., Papadias, D., Tao, Y.: All-Nearest-Neighbors Queries in Spatial Databases. In: SSDBM, pp. 297–306 (2004)Google Scholar
  61. 61.
    Zhu, M., Papadias, D., Zhang, J., Lee, D.L.: Top-k Spatial Joins. IEEE Trans. on Knowl. and Data Eng. 17(4), 567–579 (2005)CrossRefGoogle Scholar
  62. 62.
    Zimbrao, G., de Souza, J.M.: A Raster Approximation for Processing of Spatial Joins. In: VLDB, pp. 558–569 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alberto Belussi
    • 1
  • Barbara Catania
    • 2
  • Sara Migliorini
    • 1
  1. 1.University of VeronaVeronaItaly
  2. 2.University of GenoaGenoaItaly

Personalised recommendations