Approximate Queries with Adaptive Processing

  • Barbara Catania
  • Giovanna Guerrini
Part of the Intelligent Systems Reference Library book series (ISRL, volume 36)


The traditional query processing approach, by which queries are executed exactly according to a query execution plan selected before query execution starts, breaks down in heterogeneous and dynamic processing environments that are becoming more and more common as query processing contexts. In such environments, queries are often relaxed and query processing is forced to be adaptive and approximate, either to cope with limited processing resources or with limited data knowledge and data heterogeneity.When approximation and adaptivity are applied in order to cope with limited processing resources, possibly sacrificing result quality, we refer to as Quality of Service (QoS)-oriented techniques. On the other hand, when they are a means to improve the quality of results, in presence of limited data knowledge and data heterogeneity, we refer to as Quality of Data (QoD)-oriented techniques. While both kinds of approximation techniques have been proposed, most adaptive solutions are QoS-oriented. In this chapter, we first survey both kinds of approximation and introduce adaptive query processing techniques; then, we show that techniques which apply a QoD-oriented approximation in a QoD-oriented adaptive way, though demonstrated potentially useful on some examples, are still largely neglected.


Data Stream Query Processing Ranking Function Query Execution Skyline Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.H., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.B.: The Design of the Borealis Stream Processing Engine. In: CIDR, pp. 277–289 (2005)Google Scholar
  2. 2.
    Acharya, S., Gibbons, P.B., Poosala, V.: Congressional Samples for Approximate Answering of Group-By Queries. In: SIGMOD Conference, pp. 487–498 (2000)Google Scholar
  3. 3.
    Acharya, S., Gibbons, P.B., Poosala, V., Ramaswamy, S.: Join Synopses for Approximate Query Answering. In: SIGMOD Conference, pp. 275–286 (1999)Google Scholar
  4. 4.
    Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated Ranking of Database Query Results. In: CIDR (2003)Google Scholar
  5. 5.
    Amato, G., Rabitti, F., Savino, P., Zezula, P.: Region Proximity in Metric Spaces and its Use for Approximate Similarity Search. ACM Trans. Inf. Syst. 21(2), 192–227 (2003)CrossRefGoogle Scholar
  6. 6.
    Amer-Yahia, S., Cho, S., Srivastava, D.: Tree Pattern Relaxation. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 496–513. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Amer-Yahia, S., Koudas, N., Marian, A., Srivastava, D., Toman, D.: Structure and Content Scoring for XML. In: VLDB, pp. 361–372 (2005)Google Scholar
  8. 8.
    Arasu, A., Manku, G.S.: Approximate Counts and Quantiles over Sliding Windows. In: PODS, pp. 286–296 (2004)Google Scholar
  9. 9.
    Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An Optimal Algorithm for Approximate Nearest Neighbor Searching Fixed Dimensions. J. ACM 45(6), 891–923 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Augsten, N., Böhlen, M.H., Dyreson, C.E., Gamper, J.: Approximate Joins for Data-Centric XML. In: ICDE, pp. 814–823 (2008)Google Scholar
  11. 11.
    Avnur, R., Hellerstein, J.M.: Eddies: Continuously Adaptive Query Processing. In: SIGMOD Conference, pp. 261–272 (2000)Google Scholar
  12. 12.
    Azevedo, L.G., Zimbrão, G., de Souza, J.M.: Approximate Query Processing in Spatial Databases Using Raster Signatures. In: Advances in Geoinformatics, pp. 53–72 (2006)Google Scholar
  13. 13.
    Babcock, B., Babu, S., Datar, M., Motwani, R., Thomas, D.: Operator Scheduling in Data Stream Systems. VLDB J. 13(4), 333–353 (2004)CrossRefGoogle Scholar
  14. 14.
    Babcock, B., Datar, M., Motwani, R.: Sampling From a Moving Window over Streaming Data. In: SODA, pp. 633–634 (2002)Google Scholar
  15. 15.
    Babcock, B., Datar, M., Motwani, R.: Load Shedding for Aggregation Queries over Data Streams. In: ICDE, pp. 350–361 (2004)Google Scholar
  16. 16.
    Babu, S., Bizarro, P.: Adaptive Query Processing in the Looking Glass. In: CIDR, pp. 238–249 (2005)Google Scholar
  17. 17.
    Babu, S., Bizarro, P., DeWitt, D.J.: Proactive Re-optimization. In: SIGMOD Conference, pp. 107–118 (2005)Google Scholar
  18. 18.
    Babu, S., Motwani, R., Munagala, K., Nishizawa, I., Widom, J.: Adaptive Ordering of Pipelined Stream Filters. In: SIGMOD Conference, pp. 407–418 (2004)Google Scholar
  19. 19.
    Babu, S., Munagala, K., Widom, J., Motwani, R.: Adaptive Caching for Continuous Queries. In: ICDE, pp. 118–129 (2005)Google Scholar
  20. 20.
    Babu, S., Srivastava, U., Widom, J.: Exploiting k-Constraints to Reduce Memory Overhead in Continuous Queries over Data Streams. ACM Trans. Database Syst. 29(3), 545–580 (2004)CrossRefGoogle Scholar
  21. 21.
    Babu, S., Widom, J.: StreaMon: An Adaptive Engine for Stream Query Processing. In: SIGMOD Conference, pp. 931–932 (2004)Google Scholar
  22. 22.
    Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D., Trevisan, L.: Counting Distinct Elements in a Data Stream. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 1–10. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Barbará, D., DuMouchel, W., Faloutsos, C., Haas, P.J., Hellerstein, J.M., Ioannidis, Y.E., Jagadish, H.V., Johnson, T., Ng, R.T., Poosala, V., Ross, K.A., Sevcik, K.C.: The New Jersey Data Reduction Report. IEEE Data Eng. Bull. 20(4), 3–45 (1997)Google Scholar
  24. 24.
    Belussi, A., Boucelma, O., Catania, B., Lassoued, Y., Podestà, P.: Towards Similarity-Based Topological Query Languages. In: Grust, T., Höpfner, H., Illarramendi, A., Jablonski, S., Fischer, F., Müller, S., Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS, vol. 4254, pp. 675–686. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Bizarro, P., Babu, S., DeWitt, D.J., Widom, J.: Content-Based Routing: Different Plans for Different Data. In: VLDB, pp. 757–768 (2005)Google Scholar
  26. 26.
    Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE, pp. 421–430 (2001)Google Scholar
  27. 27.
    Braumandl, R., Keidl, M., Kemper, A., Kossmann, D., Kreutz, A., Seltzsam, S., Stocker, K.: ObjectGlobe: Ubiquitous Query Processing on the Internet. VLDB J. 10(1), 48–71 (2001)zbMATHGoogle Scholar
  28. 28.
    Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker, M., Tatbul, N., Zdonik, S.B.: Monitoring Streams - A New Class of Data Management Applications. In: VLDB, pp. 215–226 (2002)Google Scholar
  29. 29.
    Catania, B., Guerrini, G.: Towards Adaptively Approximated Search in Distributed Architectures. In: Vakali, A., Jain, L.C. (eds.) New Directions in Web Data Management 1. Studies in Computational Intelligence, vol. 331, pp. 171–212. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Chakrabarti, K., Garofalakis, M.N., Rastogi, R., Shim, K.: Approximate Query Processing using Wavelets. VLDB J. 10(2-3), 199–223 (2001)zbMATHGoogle Scholar
  31. 31.
    Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.: TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In: CIDR (2003)Google Scholar
  32. 32.
    Chaudhuri, S., Das, G., Narasayya, V.R.: Optimized Stratified Sampling for Approximate Query Processing. ACM Trans. Database Syst. 32(2), 9 (2007)CrossRefGoogle Scholar
  33. 33.
    Chaudhuri, S., Ganti, V., Kaushik, R.: A Primitive Operator for Similarity Joins in Data Cleaning. In: ICDE, p. 5 (2006)Google Scholar
  34. 34.
    Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: A Scalable Continuous Query System for Internet Databases. In: SIGMOD Conference, pp. 379–390 (2000)Google Scholar
  35. 35.
    Ciaccia, P., Patella, M.: PAC Nearest Neighbor Queries: Approximate and Controlled Search in High-Dimensional and Metric Spaces. In: ICDE, p. 244 (2000)Google Scholar
  36. 36.
    Considine, J., Hadjieleftheriou, M., Li, F., Byers, J.W., Kollios, G.: Robust Approximate Aggregation in Sensor Data Management Systems. ACM Trans. Database Syst. 34(1) (2009)Google Scholar
  37. 37.
    Considine, J., Li, F., Kollios, G., Byers, J.W.: Approximate Aggregation Techniques for Sensor Databases. In: ICDE, pp. 449–460 (2004)Google Scholar
  38. 38.
    Cormode, G., Garofalakis, M.N.: Sketching Streams Through the Net: Distributed Approximate Query Tracking. In: VLDB, pp. 13–24 (2005)Google Scholar
  39. 39.
    Corral, A., Cañadas, J., Vassilakopoulos, M.: Approximate Algorithms for Distance-Based Queries in High-Dimensional Data Spaces Using R-Trees. In: Manolopoulos, Y., Návrat, P. (eds.) ADBIS 2002. LNCS, vol. 2435, pp. 163–176. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  40. 40.
    Das, A., Gehrke, J., Riedewald, M.: Approximate Join Processing Over Data Streams. In: SIGMOD Conference, pp. 40–51 (2003)Google Scholar
  41. 41.
    Das, G., Gunopulos, D., Koudas, N., Sarkas, N.: Ad-hoc Top-k Query Answering for Data Streams. In: VLDB, pp. 183–194 (2007)Google Scholar
  42. 42.
    Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining Stream Statistics over Sliding Windows. SIAM J. Comput. 31(6), 1794–1813 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J.M., Hong, W.: Model-Driven Data Acquisition in Sensor Networks. In: VLDB, pp. 588–599 (2004)Google Scholar
  44. 44.
    Deshpande, A., Ives, Z.G., Raman, V.: Adaptive Query Processing. Foundations and Trends in Databases 1(1), 1–140 (2007)zbMATHCrossRefGoogle Scholar
  45. 45.
    Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate Record Detection: A Survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)CrossRefGoogle Scholar
  46. 46.
    Eurviriyanukul, K., Paton, N.W., Fernandes, A.A.A., Lynden, S.J.: Adaptive Join Processing in Pipelined Plans. In: EDBT, pp. 183–194 (2010)Google Scholar
  47. 47.
    Gedik, B., Wu, K.L., Yu, P.S., Liu, L.: Adaptive Load Shedding for Windowed Stream Joins. In: CIKM, pp. 171–178 (2005)Google Scholar
  48. 48.
    Gedik, B., Wu, K.L., Yu, P.S., Liu, L.: CPU Load Shedding for Binary Stream Joins. Knowl. Inf. Syst. 13(3), 271–303 (2007)CrossRefGoogle Scholar
  49. 49.
    Gedik, B., Wu, K.L., Yu, P.S., Liu, L.: GrubJoin: An Adaptive, Multi-Way, Windowed Stream Join with Time Correlation-Aware CPU Load Shedding. IEEE Trans. Knowl. Data Eng. 19(10), 1363–1380 (2007)CrossRefGoogle Scholar
  50. 50.
    Gibbons, P.B., Matias, Y.: Synopsis Data Structures for Massive Data Sets. In: Abello, J.M., Vitter, J.S. (eds.) External Memory Algorithms, pp. 39–70. American Mathematical Society (1999)Google Scholar
  51. 51.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)zbMATHGoogle Scholar
  52. 52.
    Gounaris, A., Smith, J., Paton, N.W., Sakellariou, R., Fernandes, A.A.A., Watson, P.: Adaptive Workload Allocation in Query Processing in Autonomous Heterogeneous Environments. Distributed and Parallel Databases 25(3), 125–164 (2009)CrossRefGoogle Scholar
  53. 53.
    Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S., Srivastava, D.: Approximate String Joins in a Database (Almost) for Free. In: VLDB, pp. 491–500 (2001)Google Scholar
  54. 54.
    Guha, S., Jagadish, H.V., Koudas, N., Srivastava, D., Yu, T.: Approximate XML Joins. In: SIGMOD Conference, pp. 287–298 (2002)Google Scholar
  55. 55.
    Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked Keyword Search over XML Documents. In: SIGMOD Conference, pp. 16–27 (2003)Google Scholar
  56. 56.
    Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: SIGMOD Conference, pp. 47–57 (1984)Google Scholar
  57. 57.
    Han, D., Wang, G., Xiao, C., Zhou, R.: Load Shedding for Window Joins over Streams. J. Comput. Sci. Technol. 22(2), 182–189 (2007)CrossRefGoogle Scholar
  58. 58.
    Ilyas, I.F., Aref, W.G., Elmagarmid, A.K., Elmongui, H.G., Shah, R., Vitter, J.S.: Adaptive Rank-aware Query Optimization in Relational Databases. ACM Trans. Database Syst. 31(4), 1257–1304 (2006)CrossRefGoogle Scholar
  59. 59.
    Ilyas, I.F., Beskales, G., Soliman, M.A.: A Survey of Top-k Query Processing Techniques in Relational Database Systems. ACM Comput. Surv. 40(4) (2008)Google Scholar
  60. 60.
    Ioannidis, Y.E., Kang, Y.: Randomized Algorithms for Optimizing Large Join Queries. SIGMOD Rec. 19, 312–321 (1990)CrossRefGoogle Scholar
  61. 61.
    Ioannidis, Y.E., Ng, R.T., Shim, K., Sellis, T.K.: Parametric Query Optimization. In: VLDB, pp. 103–114 (1992)Google Scholar
  62. 62.
    Ioannidis, Y.E., Poosala, V.: Histogram-Based Approximation of Set-Valued Query-Answers. In: VLDB, pp. 174–185 (1999)Google Scholar
  63. 63.
    Ives, Z.G., Deshpande, A., Raman, V.: Adaptive Query Processing: Why, How, When, and What Next? In: VLDB, pp. 1426–1427 (2007)Google Scholar
  64. 64.
    Ives, Z.G., Florescu, D., Friedman, M., Levy, A.Y., Weld, D.S.: An Adaptive Query Execution System for Data Integration. In: SIGMOD Conference, pp. 299–310 (1999)Google Scholar
  65. 65.
    Ives, Z.G., Halevy, A.Y., Weld, D.S.: Adapting to Source Properties in Processing Data Integration Queries. In: SIGMOD Conference, pp. 395–406 (2004)Google Scholar
  66. 66.
    Jiao, Y.: Maintaining Stream Statistics over Multiscale Sliding Windows. ACM Trans. Database Syst. 31, 1305–1334 (2006)CrossRefGoogle Scholar
  67. 67.
    Kabra, N., DeWitt, D.J.: Efficient Mid-Query Re-Optimization of Sub-Optimal Query Execution Plans. In: SIGMOD Conference, pp. 106–117 (1998)Google Scholar
  68. 68.
    Kadlag, A., Wanjari, A.V., Freire, J.-L., Haritsa, J.R.: Supporting Exploratory Queries in Databases. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp. 594–605. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  69. 69.
    Kang, J., Naughton, J.F., Viglas, S.: Evaluating Window Joins over Unbounded Streams. In: ICDE, pp. 341–352 (2003)Google Scholar
  70. 70.
    Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220, 671–680 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Kossmann, D., Ramsak, F., Rost, S.: Shooting Stars in the Sky: An Online Algorithm for Skyline Queries. In: VLDB, pp. 275–286 (2002)Google Scholar
  72. 72.
    Koudas, N., Li, C., Tung, A.K.H., Vernica, R.: Relaxing Join and Selection Queries. In: VLDB, pp. 199–210 (2006)Google Scholar
  73. 73.
    Koudas, N., Sarawagi, S., Srivastava, D.: Record Linkage: Similarity Measures and Algorithms. In: SIGMOD Conference, pp. 802–803 (2006)Google Scholar
  74. 74.
    Koudas, N., Srivastava, D.: Approximate Joins: Concepts and Techniques. In: VLDB, p. 1363 (2005)Google Scholar
  75. 75.
    Kulkarni, D., Ravishankar, C.V.: iJoin: Importance-Aware Join Approximation Over Data Streams. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069, pp. 541–548. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  76. 76.
    Lee, D.: Query Relaxation for XML Model. Ph.D. thesis. University of California (2002)Google Scholar
  77. 77.
    Lengu, R., Missier, P., Fernandes, A.A.A., Guerrini, G., Mesiti, M.: Time-completeness Trade-offs in Record Linkage using Adaptive Query Processing. In: EDBT, pp. 851–861 (2009)Google Scholar
  78. 78.
    Li, Q., Shao, M., Markl, V., Beyer, K.S., Colby, L.S., Lohman, G.M.: Adaptively Reordering Joins during Query Execution. In: ICDE, pp. 26–35 (2007)Google Scholar
  79. 79.
    Liu, B., Zhu, Y., Jbantova, M., Momberger, B., Rundensteiner, E.A.: A Dynamically Adaptive Distributed System for Processing Complex Continuous Queries. In: VLDB, pp. 1338–1341 (2005)Google Scholar
  80. 80.
    Liu, H., Wang, X., Yang, Y.: Comments on ”An Integrated Efficient Solution for Computing Frequent and Top-k Elements in Data Streams”. ACM Trans. Database Syst. 35(2) (2010)Google Scholar
  81. 81.
    Liu, X., Dong, X.L., Ooi, B.C., Srivastava, D.: Online Data Fusion. In: VLDB (2011)Google Scholar
  82. 82.
    Liu, Y., Li, J., Gao, H., Fang, X.: Enabling epsilon-Approximate Querying in Sensor Networks. PVLDB 2(1), 169–180 (2009)Google Scholar
  83. 83.
    Lu, H., Zhou, Y., Haustad, J.: Continuous Skyline Monitoring Over Distributed Data Streams. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 565–583. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  84. 84.
    Madden, S., Shah, M.A., Hellerstein, J.M., Raman, V.: Continuously Adaptive Continuous Queries over Streams. In: SIGMOD Conference, pp. 49–60 (2002)Google Scholar
  85. 85.
    Manku, G.S., Motwani, R.: Approximate Frequency Counts over Data Streams. In: VLDB, pp. 346–357 (2002)Google Scholar
  86. 86.
    Marian, A., Amer-Yahia, S., Koudas, N., Srivastava, D.: Adaptive Processing of Top-k Queries in XML. In: ICDE, pp. 162–173 (2005)Google Scholar
  87. 87.
    Markl, V., Raman, V., Simmen, D.E., Lohman, G.M., Pirahesh, H.: Robust Query Processing through Progressive Optimization. In: SIGMOD Conference, pp. 659–670 (2004)Google Scholar
  88. 88.
    Metwally, A., Agrawal, D., Abbadi, A.E.: An Integrated Efficient Solution for Computing Frequent and Top-k Elements in Data Streams. ACM Trans. Database Syst. 31(3), 1095–1133 (2006)CrossRefGoogle Scholar
  89. 89.
    Mishra, C., Koudas, N.: Interactive Query Refinement. In: EDBT, pp. 862–873 (2009)Google Scholar
  90. 90.
    Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G.S., Olston, C., Rosenstein, J., Varma, R.: Query Processing, Approximation, and Resource Management in a Data Stream Management System. In: CIDR (2003)Google Scholar
  91. 91.
    Mouratidis, K., Bakiras, S., Papadias, D.: Continuous Monitoring of Top-k Queries over Sliding Windows. In: SIGMOD Conference, pp. 635–646 (2006)Google Scholar
  92. 92.
    Mozafari, B., Zaniolo, C.: Optimal Load Shedding with Aggregates and Mining Queries. In: ICDE, pp. 76–88 (2010)Google Scholar
  93. 93.
    Munagala, K., Srivastava, U., Widom, J.: Optimization of Continuous Queries with Shared Expensive Filters. In: PODS, pp. 215–224 (2007)Google Scholar
  94. 94.
    Olston, C., Jiang, J., Widom, J.: Adaptive Filters for Continuous Queries over Distributed Data Streams. In: SIGMOD Conference, pp. 563–574 (2003)Google Scholar
  95. 95.
    Pan, L., Luo, J., Li, J.: Probing Queries in Wireless Sensor Networks. In: ICDCS, pp. 546–553 (2008)Google Scholar
  96. 96.
    Papadias, D., Arkoumanis, D.: Approximate Processing of Multiway Spatial Joins in Very Large Databases. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 179–196. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  97. 97.
    Papadias, D., Mantzourogiannis, M., Kalnis, P., Mamoulis, N., Ahmad, I.: Content-based Retrieval using Heuristic Search. In: SIGIR, pp. 168–175. ACM, New York (1999)Google Scholar
  98. 98.
    Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive Skyline Computation in Database Systems. ACM Trans. Database Syst. 30(1), 41–82 (2005)CrossRefGoogle Scholar
  99. 99.
    Poosala, V., Ganti, V., Ioannidis, Y.E.: Approximate Query Answering using Histograms. IEEE Data Eng. Bull. 22(4), 5–14 (1999)Google Scholar
  100. 100.
    Raman, V., Deshpande, A., Hellerstein, J.M.: Using State Modules for Adaptive Query Processing. In: ICDE, p. 353 (2003)Google Scholar
  101. 101.
    Reiss, F., Hellerstein, J.M.: Data Triage: An Adaptive Architecture for Load Shedding in TelegraphCQ. In: VLDB (2004)Google Scholar
  102. 102.
    Rundensteiner, E.A., Ding, L., Sutherland, T.M., Zhu, Y., Pielech, B., Mehta, N.: CAPE: Continuous Query Engine with Heterogeneous-Grained Adaptivity. In: VLDB, pp. 1353–1356 (2004)Google Scholar
  103. 103.
    Rusu, F., Dobra, A.: Sketching Sampled Data Streams. In: ICDE, pp. 381–392 (2009)Google Scholar
  104. 104.
    Sanz, I., Mesiti, M., Guerrini, G., Llavori, R.B.: Fragment-based Approximate Retrieval in Highly Heterogeneous XML Collections. Data Knowl. Eng. 64(1), 266–293 (2008)CrossRefGoogle Scholar
  105. 105.
    Sarawagi, S., Kirpal, A.: Efficient Set Joins on Similarity Predicates. In: SIGMOD Conference, pp. 743–754 (2004)Google Scholar
  106. 106.
    Sarkas, N., Das, G., Koudas, N., Tung, A.K.H.: Categorical Skylines for Streaming Data. In: SIGMOD Conference, pp. 239–250 (2008)Google Scholar
  107. 107.
    Shah, M.A., Hellerstein, J.M., Chandrasekaran, S., Franklin, M.J.: Flux: An Adaptive Partitioning Operator for Continuous Query Systems. In: ICDE, pp. 25–36 (2003)Google Scholar
  108. 108.
    Silberstein, A., Braynard, R., Ellis, C.S., Munagala, K., Yang, J.: A Sampling-Based Approach to Optimizing Top-k Queries in Sensor Networks. In: ICDE, p. 68 (2006)Google Scholar
  109. 109.
    Silva, Y.N., Aref, W.G., Ali, M.H.: The similarity join database operator. In: ICDE, pp. 892–903 (2010)Google Scholar
  110. 110.
    Skordylis, A., Trigoni, N., Guitton, A.: A Study of Approximate Data Management Techniques for Sensor Networks. In: Intelligent Solutions in Embedded Systems, pp. 1–12 (2006)Google Scholar
  111. 111.
    Spiegel, J., Polyzotis, N.: TuG Synopses for Approximate Query Answering. ACM Trans. Database Syst. 34(1) (2009)Google Scholar
  112. 112.
    Srivastava, U., Widom, J.: Memory-Limited Execution of Windowed Stream Joins. In: VLDB, pp. 324–335 (2004)Google Scholar
  113. 113.
    Sun, S., Huang, Z., Zhong, H., Dai, D., Liu, H., Li, J.: Efficient Monitoring of Skyline Queries over Distributed Data Streams. Knowl. Inf. Syst. 25(3), 575–606 (2010)CrossRefGoogle Scholar
  114. 114.
    Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient Progressive Skyline Computation. In: VLDB, pp. 301–310 (2001)Google Scholar
  115. 115.
    Tao, Y., Papadias, D.: Maintaining Sliding Window Skylines on Data Streams. IEEE Trans. Knowl. Data Eng. 18(2), 377–391 (2006)Google Scholar
  116. 116.
    Tatbul, N., Çetintemel, U., Zdonik, S.B., Cherniack, M., Stonebraker, M.: Load Shedding in a Data Stream Manager. In: VLDB, pp. 309–320 (2003)Google Scholar
  117. 117.
    Tatbul, N., Zdonik, S.B.: Window-Aware Load Shedding for Aggregation Queries over Data Streams. In: VLDB, pp. 799–810 (2006)Google Scholar
  118. 118.
    Theobald, M., Bast, H., Majumdar, D., Schenkel, R., Weikum, G.: TopX: Efficient and Versatile Top-k Query Processing for Semistructured Data. VLDB J. 17(1), 81–115 (2008)CrossRefGoogle Scholar
  119. 119.
    Tian, F., DeWitt, D.J.: Tuple Routing Strategies for Distributed Eddies. In: VLDB, pp. 333–344 (2003)Google Scholar
  120. 120.
    Tirthapura, S., Xu, B., Busch, C.: Sketching Asynchronous Data streams over Sliding Windows. Distributed Computing 20(5), 359–374 (2008)CrossRefGoogle Scholar
  121. 121.
    Urhan, T., Franklin, M.J., Amsaleg, L.: Cost Based Query Scrambling for Initial Delays. In: SIGMOD Conference, pp. 130–141 (1998)Google Scholar
  122. 122.
    Vitter, J.S., Wang, M.: Approximate Computation of Multidimensional Aggregates of Sparse Data Using Wavelets. In: SIGMOD Conference, pp. 193–204 (1999)Google Scholar
  123. 123.
    Wang, J., Li, G., Feng, J.: Trie-Join: Efficient Trie-based String Similarity Joins with Edit-Distance Constraints. PVLDB 3(1), 1219–1230 (2010)Google Scholar
  124. 124.
    Weis, M., Naumann, F.: DogmatiX Tracks down Duplicates in XML. In: SIGMOD Conference, pp. 431–442 (2005)Google Scholar
  125. 125.
    Wilschut, A.N., Apers, P.M.G.: Dataflow Query Execution in a Parallel Main-Memory Environment. In: PDIS, pp. 68–77 (1991)Google Scholar
  126. 126.
    Wu, J., Tan, K.-L., Zhou, Y.: QoS-Oriented Multi-Query Scheduling Over Data Streams. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463, pp. 215–229. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  127. 127.
    Yang, Y., Krämer, J., Papadias, D., Seeger, B.: HybMig: A Hybrid Approach to Dynamic Plan Migration for Continuous Queries. IEEE Trans. Knowl. Data Eng. 19(3), 398–411 (2007)CrossRefGoogle Scholar
  128. 128.
    Yi, K., Li, F., Cormode, G., Hadjieleftheriou, M., Kollios, G., Srivastava, D.: Small Synopses for Group-by Query Verification on Outsourced Data Streams. ACM Trans. Database Syst. 34(3) (2009)Google Scholar
  129. 129.
    Yu, H., Hwang, S.-w., Chang, K.C.C.: Enabling Ad-hoc Ranking for Data Retrieval. In: ICDE, pp. 514–515 (2005)Google Scholar
  130. 130.
    Zhang, Z., Hwang, S.-w., Chang, K.C.C., Wang, M., Lang, C.A.3., Chang, Y.C.: Boolean Ranking: Querying a Database by k-constrained Optimization. In: SIGMOD Conference, pp. 359–370 (2006)Google Scholar
  131. 131.
    Zhou, X., Gaugaz, J., Balke, W.T., Nejdl, W.: Query Relaxation using Malleable Schemas. In: SIGMOD Conference, pp. 545–556 (2007)Google Scholar
  132. 132.
    Zimbrao, G., de Souza, J.M.: A Raster Approximation For Processing of Spatial Joins. In: VLDB, pp. 558–569 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of GenoaGenoaItaly

Personalised recommendations