An Automatic Portal Radiograph Verification System for Proton Therapy

  • Neil Muller
  • Cobus Caarstens
  • Leendert van der Bijl
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 144)


In conformal radiotherapy, the final position should be confirmed with a portal radiograph showing the relationship of the patient to the beam line. Historically, this radiograph is verified by manual comparison with a reconstructed radiograph of the expected patient position. In this paper, we discuss a new automatic verification system developed for the proton therapy facility at iThemba LABS1.


Proton Therapy Pinhole Camera Calibration Object Close Range Photogrammetry Digital Reconstructed Radiograph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdel-Aziz, Y.I., Karara, H.M.: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. In: Proceedings of the Symposium on Close Range Photogrammetry, pp. 1–18 (1971)Google Scholar
  2. 2.
    van der Bijl, L.: Verification of patient position for proton therapy using portal X-rays and digitally reconstructed radiographs. Master’s thesis, University of Stellenbosch (2006)Google Scholar
  3. 3.
    Brack, C., Götte, H., Grosse, F., Mocrezuma, J., Roth, M., Schweikard, A.: Towards accurate x-ray-camera calibration in computer-assisted robotic surgery. In: Proceedings of the International Symposium on Computer Assisted Radiology, pp. 721–728 (1996)Google Scholar
  4. 4.
    Carstens, J.E.: Fast generation of digitally reconstructed radiographs for use in 2D-3D image registration. Master’s thesis, University of Stellenbosch (2008)Google Scholar
  5. 5.
    Eisert, P.: Model-based camera calibration using analysis by synthesis techniques. In: Greiner et al. [6], pp. 307–314Google Scholar
  6. 6.
    Greiner, G., Niemann, H., Ertl, T., Girod, B., Seidel, H.P. (eds.): Vision, Modeling, and Visualization 2002 (2002)Google Scholar
  7. 7.
    Jones, D.T.L., Schreuder, A.N., Symons, J.E., Rüther, H., van der Vlugt, G., Bennet, K.F., Yates, A.D.B.: Use of stereo-photgrammetry in proton radiotherapy. In: Rüther, H. (ed.) Proceedings of the International FIG Symposium on Photogrammetry in Enigineering Surveying, pp. 138–152 (1995)Google Scholar
  8. 8.
    de Kock, E., O’Kennedy, B., Muller, N.: Calibrating a stereo rig and CT scanner with a single calibration object. In: Greiner et al. [6]Google Scholar
  9. 9.
    Levoy, M., Hanrahan, P.: Light field rendering. In: SIGGRAPH 1996: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 31–42. ACM Press, New York (1996), Google Scholar
  10. 10.
    Muller, N., de Kock, E., van Rooyen, R., Trauernicht, C.: A stereophotogrammic system to position patients for proton therapy. In: Ranchordas, A., Araújo, H., Vitriá, J. (eds.) VISAPP 2007, Second (2007)Google Scholar
  11. 11.
    Russakoff, D.B., Rohlfing, T., Rueckert, D., Shahidi, R., Kim, D., Maurer Jr., C.R.: Fast calculation of digitally reconstructed radiographs using light fields. In: Sonka, M., Fitzpatrick, J.M. (eds.) Medical Imaging 2003: Image Processing. Proceedings of the SPIE, vol. 5032, pp. 684–695 (2003), doi:10.1117/12.481888Google Scholar
  12. 12.
    Webb, S.: The physics of three-dimensional radiotherapy: Confromal radiotherapy, radiosurgery and treatment planning. Insitute of Physics Publishing, Bristol and Philadelphia (1993)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Neil Muller
    • 1
  • Cobus Caarstens
    • 2
  • Leendert van der Bijl
    • 2
  1. 1.Department of Mathematical SciencesUniversity of StellenboschStellenboschSouth Africa
  2. 2.Department of Medical RadiationiThemba LABSCape TownSouth Africa

Personalised recommendations