Application of Domain Knowledge in Relational Schema Integration with Uncertainty

  • Wen Bin Hu
  • Hong Zhang
  • Si Di Zhang
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 144)


Schema integration is the activity of providing a unified representation of multiple data sources. The core problems in schema integration are: schema matching and schema merging. There are uncertain problems in schema matching and schema merging. To solve the uncertain problems of relational schema integration, Domain Knowledge Application Model (DKAM) is proposed as a component of Uncertain Relational Schema Integration Model (URSIM). An autonomic computing approach is adopted in DKAM. Semantic integration approach and D-S evidence combination approach are applied in URSIM. A new method is proposed to calculate reliability of global integrated schema in the paper. Experimental results show that URSIM is feasible and DKAM is valuable and advanced. In contrast with current methods for schema integration with uncertainty, URSIM is efficient and the time complexity is reduced.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching. VLDB Journal 10, 334–335 (2001)MATHCrossRefGoogle Scholar
  2. 2.
    Bernstein, P.: Applying model management to classical meta data problems. In: Proc. CIDR, pp. 209–220 (2003)Google Scholar
  3. 3.
    Bernstein, P., Pottinger, R.A.: Merging models based on given correspondences. In: Proc. 29th VLDB Conference, Berlin (2003)Google Scholar
  4. 4.
    Madhavan, J., Bernstein, P.A., Domingos, P., Halevy, A.Y.: Representing and reasoning about mappings between domain models. In: Proc. 18th NC on AAAI/IAAI, pp. 80–86 (2002)Google Scholar
  5. 5.
    Magnani, M., Rizopoulos, N., McBrien, P., Cucci, F.: Schema integration based on uncertain semantic mappings. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 31–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Magnani, M., Montesi, D.: Uncertainty in data integration: current approaches and open problems. In: VLDB Workshop on Management of Uncertain Data, pp. 18–32 (2007)Google Scholar
  7. 7.
    Madhavan, J., Bernstein, P., Rahm, E.: Generic schema matching with Cupid. In: Proc. 27th VLDB Conference, pp. 49–58 (2001)Google Scholar
  8. 8.
    Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph matching algorithm and its application to schema matching. In: ICDE, pp. 117–128 (2002)Google Scholar
  9. 9.
    Gal, A.: Managing Uncertainty in Schema Matching with top-K Schema Mappings. In: Spaccapietra, S., Aberer, K., Cudré-Mauroux, P. (eds.) Journal on Data Semantics VI. LNCS, vol. 4090, pp. 90–114. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Nottelmann, H., Straccia, U.: Information retrieval and machine learning for probabilistic schema matching. In: Proc., Manage., vol. 43(3), pp. 552–576 (2007)Google Scholar
  11. 11.
    Nottelmann, H., Straccia, U.: splmap: A probabilistic approach to schema matching. In: ECIR, pp. 81–95 (2005)Google Scholar
  12. 12.
    Dong, X.L., Halevy, A.Y., Yu, C.: Data integration with uncertainty. The VLDB Journal 18(2), 469–500 (2009)CrossRefGoogle Scholar
  13. 13.
    Xia, W.J., Zhu, L.H., Tao, T.R.: Evidence combination approach based on uncertainty measure. Journal of Computer Application 29(8), 2257–2260 (2009)CrossRefGoogle Scholar
  14. 14.
    Huang, F.Y., Feng, Y.Q., Wang, L., Lu, P.Y.: Relation-model-based Indefinite Knowledge Representation and Inference Technology and Its Application in KMS. Journal of NanJing University of Science and Technology 30(5), 653–658 (2006)Google Scholar
  15. 15.
    Liao, B.-S., Li, S.-J., Yao, Y., Gao, J.: Conceptual Model and Realization Methods of Autonomic Computing. Journal of Software 19(4), 779–802 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Nanjing University of Science and TechnologyNanjingChina
  2. 2.Huaihai Institute of TechnologyLianyungangChina
  3. 3.SINOPEC Jiangsu Oil Exploration CorporationYangzhouChina

Personalised recommendations