On-Line Path Planning for UAV in Dynamic Environment

  • Xiao Liang
  • Honglun Wang
  • Menglei Cao
  • Tengfei Guo
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 144)


Under the premise of predicting the dynamic obstacles, a UAV path planning strategy of variable rolling window combined with potential flows is proposed. By using an autoregressive model, the expression of prediction for dynamic obstacles between discrete sampling points is given. The rolling window is designed to a triangle, also with adaptive function based on speed and angle of incidence of the dynamic obstacles. Potential flows method is used in the rolling windows to plan the obstacle avoidance route. At last the whole route is smoothed to satisfy the UAV constraints of maximum turning angle. The problem solution implementation is described along with several simulation results demonstrating the effectiveness of the method.


UAV dynamic environment autoregressive prediction on-line path planning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koenig, S., Likhachev, M., Furcy, D.: Lifelong planning A*. Artificial Intelligence (2004), doi:10.1016/j.artint.2003.12.001Google Scholar
  2. 2.
    Wang, N., Gu, X., Chen, J., Shen, L., Ren, M.: A Hybrid Neural Network Method for UAV Attack Route Integrated Planning. In: Yu, W., He, H., Zhang, N. (eds.) ISNN 2009, Part III. LNCS, vol. 5553, pp. 226–235. Springer, Heidelberg (2009), doi: 10.1007/978-3-642-01513-725CrossRefGoogle Scholar
  3. 3.
    Mei, H., Tian, Y.T., Zu, L.N.: A hybrid ant colony optimization algorithm for path planning of robot in dynamic environment. International Journal of Information Technology 12, 78–88 (2006)Google Scholar
  4. 4.
    Parry, A.C., Ordonez, P.: Intelligent path planning with evolutionary computation. In: AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario Canada (2010)Google Scholar
  5. 5.
    Bortoff, S.A.: Path planning for UAVs. In: American Control Conference (2000), doi:10.1109/ACC.2000.878915Google Scholar
  6. 6.
    Sullivan, J., Waydo, S., Campbell, M.: Using stream sunctions for complex behavior and path generation. In: AIAA Guidance, Navigation and Control Conference, Austin, USA (2003)Google Scholar
  7. 7.
    Waydo, S., Murray, R.M.: Vehicle motion planning using stream functions. In: Proc. IEEE International Conference on Robotics and Automation (ICRA 2003) (2003), doi:10.1109/ROBOT.2003.1241966Google Scholar
  8. 8.
    Zhang, C.G., Xi, Y.G.: Sub-optimality analysis of mobile robot rolling path planning. Science in China(Series F) (2003), doi:10.1360/03yf9010Google Scholar
  9. 9.
    Zhang, C.G., Xi, Y.G.: Robot rolling path planning based on locally detected information. Acta Automatica Sinica 29, 38–44 (2003)MathSciNetGoogle Scholar
  10. 10.
    Lambert, A., Gruyer, D., Mangeas, M., et al.: Safe path planning and replanning with unmapped objects detection. In: Intelligent Vehicle Symposium (2002), doi:10.1109/IVS.2002.1187946Google Scholar
  11. 11.
    Wong, C.C., Lin, B.C., Cheng C.T.: Safe path planning and replanning with unmapped objects detection. Fuzzy Systems (2001), doi: 10.1109/FUZZ.2001.1007257Google Scholar
  12. 12.
    Shi, H.Y., Sun, C.Z.: Motion planning for mobile robot under unstructured environment. Robot 26, 27–31 (2004)Google Scholar
  13. 13.
    Jeong, C.D.: Testing neural network crash avoiding system in mobile robot. Case Western Reserve University (2001)Google Scholar
  14. 14.
    Dung, L.T., Komeda, T., Takagi, M.: Reinforcement learning in non-markovian environments using automatic discovery of subgoals. In: SICE 2007 Annual Conference (2007), doi:10.1109/SICE.2007.4421430Google Scholar
  15. 15.
    AI-Hasan, S., Vachtsevanos, G.: Intelligent route planning for fast autonomous vehicles operating in a large natural terrain. Robotics and Autonomous Systems (2002), doi: 10.1016/S0921-8890(02)00208-7Google Scholar
  16. 16.
    Lee, D., Morf, M., Friedlander, B.: Recursive least squares ladder estimation algorithms. IEEE Transactions on Acoustics, Speech and Signal Processing (1981), doi:10.1109/TASSP.1981.1163587Google Scholar
  17. 17.
    Shensa, M.J.: Recursive least squares lattice algorithms-a geometrical approach. IEEE Transaction on Automatic Control (1981), doi:10.1109/TAC.1981.1102682Google Scholar
  18. 18.
    Zhang, C.G., Xi, Y.G.: Robot path planning in globally unknown environments based on rolling windows. Science in China Series E: Technological Sciences (2001), doi:10.1007/BF03014623Google Scholar
  19. 19.
    Miura, J., Shirai, Y.: Modeling motion uncertainty of moving obstacles for robot motion planning. In: Proc. IEEE, Robotics and Automation (ICRA 2000) (2000), doi:10.1109/ROBOT.2000.846363Google Scholar
  20. 20.
    Thomson, L.M.: Theoretical Hydrodynamics. Macmillan, London (1968)MATHGoogle Scholar
  21. 21.
    Currie, I.G.: Fundamental Mechanics of Fluids. MC Graw-Hill, USA (1993)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Xiao Liang
    • 1
    • 2
  • Honglun Wang
    • 1
    • 2
  • Menglei Cao
    • 1
    • 2
  • Tengfei Guo
    • 1
    • 2
  1. 1.Science and Technology on Aircraft Control LaboratoryBeijing University of Aeronautics and AstronauticsBeijingChina
  2. 2.Research Institute of Unmanned Aerial VehicleBeijing University of Aeronautics and AstronauticsBeijingChina

Personalised recommendations