Advertisement

Modeling Specific Energy for Shield Machine by Non-linear Multiple Regression Method and Mechanical Analysis

  • Qian Zhang
  • Chuanyong Qu
  • Zongxi Cai
  • Tian Huang
  • Yilan Kang
  • Ming Hu
  • Bin Dai
  • Jianzhong Leng
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 144)

Abstract

The specific energy, defined as the energy consumption to complete the excavation of unit volume of the soil, can well describe the working efficiency of a shield machine. An identification model of the specific energy is established in this paper by introducing the mechanical analysis of the shield excavating process into the nonlinear multiple regression of the on-site data. The mechanical analysis of the shield-soil system helps to decouple the nonlinear multi-parameter problem and the regression process is conducted based on a group of on-site data of subway project in China. Fairly good consistency between the model results and the on-site recorded datum can be achieved. This work provides a useful tool for the analysis of the energy consumption of shield machines.

Keywords

Shield Machine Specific energy Mechanical Analysis Nonlinear Multiple Regression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benardos, A.G., Kaliampakos, D.C.: Modelling TBM performance with artificial neural networks. Tunnelling and Underground Space Technology 19, 597–605 (2004)CrossRefGoogle Scholar
  2. Maidl, B., Herrenknecht, M., Anheuser, L.: Mechanised shield tunnelling, pp. 42–59. Ernst & Sohn, Berlin (1996)Google Scholar
  3. Reddish, D.J., Yasar, E.: A new portable rock strength energy of drilling. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 33(5), 543–548 (1996)CrossRefGoogle Scholar
  4. Acaroglu, O., Ozdemir, L., Asbury, B.: A fuzzy logic model to predict specific energy requirement for TBM performance prediction. Tunnelling and Underground Space Technology 23, 600–608 (2008)CrossRefGoogle Scholar
  5. Gertsch, R., Gertsch, L., Rostami, J.: Disc cutting tests in Colorado Red Granite: Implications for TBM performance prediction. International Journal of Rock Mechanics & Mining Sciences 44, 238–246 (2007)CrossRefGoogle Scholar
  6. Ott, R.L., Longnecker, M., Zhang, Z.Z. (trans.): An introduction to statistical methods and data analysis, pp. 583–589. Science Press, Beijing (2003) (in Chinese)Google Scholar
  7. Mikaeil, R., Naghadehi, M.Z., Sereshki, F.: Multifactorial fuzzy approach to the penetrability classification of TBM in hard rock conditions. Tunnelling and Underground Space Technology 24, 500–505 (2009)CrossRefGoogle Scholar
  8. Teale, R.: The concept of specific energy in rock drilling. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 2(1), 57–73 (1965)CrossRefGoogle Scholar
  9. Suwansawat, S., Einstein, H.H.: Artificial neural networks for predicting the maximum surface settlement caused by EPB shield tunneling. Tunnelling and Underground Space Technology 21, 133–150 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Qian Zhang
    • 1
  • Chuanyong Qu
    • 1
  • Zongxi Cai
    • 1
  • Tian Huang
    • 1
  • Yilan Kang
    • 1
  • Ming Hu
    • 1
  • Bin Dai
    • 2
  • Jianzhong Leng
    • 2
  1. 1.Key Laboratory of Modern Engineering MechanicsTianjin UniversityTianjinChina
  2. 2.China Coal Construction GroupShanghai Branch OfficeShanghaiChina

Personalised recommendations