Advertisement

Abstract

This paper describes a microrobotic gripper made from an ionic polymer metal composite (IPMC) material. The grasping capabilities of this device are described theoretically, predicting a 1.22 mN force when grasping a rigid object. Experimental results of this grasping are shown, corroborating the expected force with a measurement of 1.2 mN. In addition, a small modification to the finger, i.e., cutting one of the finger surfaces into two separate pieces allows the device to function as both a sensor and actuator. The microfinger’s sensing capability is described through its application as a force sensor.

Keywords

Force Sensor Solder Ball Artificial Muscle Electroactive Polymer Actuation Ionic Polymeric Metal Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashkin, A.: Optical trapping and manipulation of neutral particles using lasers. Proceedings of National Academy of Sciences 94, 4853–4860 (1997)CrossRefGoogle Scholar
  2. 2.
    Masuda, S., Washizu, M., Kawabata, I.: Movement of blood cells in liquid by non-uniform travelling field. IEEE Transactions on Industrial Applications 24, 217–222 (1988)CrossRefGoogle Scholar
  3. 3.
    Lee, G.B., Fu, L.M.: Platform Technology for manipulation of Cells, Protiens and DNA. In: Proceedings of International Conference on Robotics and Automation, Taipei, Taiwan, September 14-19, pp. 3636–3641 (2003)Google Scholar
  4. 4.
    Kumar, R., Kapoor, A.A., Taylor, R.H.: Preliminary experiments in robot/human cooperative microinjection. In: Proceedings of International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, October 27-31, pp. 3186–3191 (2003)Google Scholar
  5. 5.
    Zhang, H., Bellouard, Y., Sidler, T., Burdet, E., Poo, A.N., Clavel, R.: A monolithic Shape Memory Alloy Microgripper for 3-D Assembly of Tissue Engineering Scafolds. In: Brugeuteds, J.-M., Nelson, B.J. (eds.) Proceedings of SPIE-Microrobotics and Microassembly III, Boston, MA, October 29-30, vol. 4568, pp. 50–60 (2001)Google Scholar
  6. 6.
    Goldfarb, M., Celanovic, N.: A flexure-based gripper for small scale manipulation. Robotica 17(2), 181–188 (1999)CrossRefGoogle Scholar
  7. 7.
    Sun, Y., Piyabongkarn, D., Sezen, A., Nelson, B.J., Rajamani, R., Schoch, R., Potasek, D.P.: A Novel Dual-Axis Electrostatic Micro-Actuation System for Micromanipulation. In: Proceedings of International Conference on Intelligent Robots and Systems, EPFL, Switzerland, October 2-4, pp. 1796–1801 (2002)Google Scholar
  8. 8.
    Menciassi, A., Hannaford, B., Carrozza, M.C.: 4-Axis Electromagnetic Microgripper. In: Proceedings of International Conference on Robotics and Automation, Detroit, Michigan, May 10-15, pp. 2899–2904 (1999)Google Scholar
  9. 9.
    Kim, S.M., Kim, K., Shim, J.H., Kim, B., Kim, D.H., Chung, C.C.: Position and force control of a sensorized microgripper. In: Proceedings of International Conference on Control, Automation and System, Muju Resort, Jeonbuk, Korea, October 16-19, pp. 319–322 (2002)Google Scholar
  10. 10.
    Zesch, W., Brunner, M., Weber, A.: Vacuum Tool for Handling Microobjects with a Nanorobot. In: Proceedings of International Conference on Robotics and Automation, Detroit, Michigan, May 10-15, pp. 2899–2904 (1999)Google Scholar
  11. 11.
    Arai, F., Fukuda, T.: Adhesion-type Micro endeffector for Micromanipulation. In: Proceedings of the International Conference on Robotics and Automation, Albuquerque, NM, pp. 1472–1477 (April 1997)Google Scholar
  12. 12.
    Shen, Y., Xi, N., Li, W.J.: Force-Guided Assembly of Micro Mirrors. In: Proceedings of International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, October 27-31, pp. 2149–2154 (2003)Google Scholar
  13. 13.
    Keller, C.G.: Microgrippers with Integrated Actuator and Force sensors. In: Proceedings of the International Symposium on Robotics and Automation, World Automation Conference, Anchorage, AK (May 1998)Google Scholar
  14. 14.
    Carrozza, M.C., Dario, P., Menciassi, A., Fenu, A.: Manipulating Biological and Mechanical Micro-objects with a LIGA-Microfabricated End Effector. In: Proceedings of the International Conference on Robotics and Automation, Leuven, Belgium, May 16-20, pp. 1811–1816 (1998)Google Scholar
  15. 15.
    Deole, U., Lumia, R., Shahinpoor, M.: Grasping flexible objects using artificial muscle microgrippers. In: World Automation Congress: International Symposium on Manufacturing and Applications (ISOMA), Seville, Spain, June 28-July 2 (2004)Google Scholar
  16. 16.
    Grodzinsky, A.J.: Electromechanics of Deformable Polyelectrolyte Membranes, in Dept. of Elec. Eng. vol. Sc.D. Dissertation: MIT (1974)Google Scholar
  17. 17.
    Yannis, I.V., Grodzinsky, A.J.: Electromechanical Energy Conversion with Collagen Fibers in an Aqueous Medium. Journal of Mechanochemical Cell Motility 2, 113–125 (1973)Google Scholar
  18. 18.
    Shahinpoor, M.: Continuum Electromechanics of Ionic Polymeric Gels as Artificial Muscles for Robotic Applications. Int. Journal of Smart Material and Structures 3, 367–372 (1994)CrossRefGoogle Scholar
  19. 19.
    Osada, Y., Hasebe, M.: Electrically Activated Mechanochemical Devices Using Polyelectrolyte Gels. Chemistry Letters, 1285–1288 (1985)Google Scholar
  20. 20.
    Brock, D., Lee, W., Segalman, D., Witkowski, W.: A Dynamic Model of a Linear Actuator Based on Polymer Hydrogel. In: International Conference on Intelligent Materials, pp. 210–222 (1994)Google Scholar
  21. 21.
    Bar-Cohen, Y., Xue, T., Joffe, B., Lih, S.-S., Shahinpoor, M., Simpson, J., Smith, J., Willis, P.: Electroactive polymers (IPMC) low mass muscle actuators. In: SPIE Conference on Smart Materials and Structures, San Diego, California (1997)Google Scholar
  22. 22.
    Kim, S.J., Lee, I.T., Lee, H.Y., Kim, Y.H.: Performance improvement of an ionic polymer-metal composite actuator by parylene thin film coating. Smart Materials and Structures 15, 1540–1546 (2006)CrossRefGoogle Scholar
  23. 23.
    Lumia, R., Shahinpoor, M.: Design of a Microgripper Using Artificial Muscles. In: World Automation Conference, Anchorage, AK (1998)Google Scholar
  24. 24.
    Lumia, R., Shahinpoor, M.: Microgripper design using electro-active polymers. In: Smart Structures and Materials 1999: Electroactive Polymer Actuators and Devices, Newport Beach, CA, USA. SPIE-Int. Soc. Opt. Eng, vol. 3669, pp. 322–329 (1999)Google Scholar
  25. 25.
    Sadeghipour, K., Salomon, R., Neogi, S.: Development of a novel electrochemically active membrane and ‘smart’ material based vibration sensor/damper. Smart Materials and Structures 1, 172–179 (1992)CrossRefGoogle Scholar
  26. 26.
    Shahinpoor, M.: A New Effect in Ionic Polymeric Gels: The Ionic Flexogelectric Effect. In: North American Conference on Smart Structures and Materials, San Diego, California, vol. 2441 (1995)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Ron Lumia
    • 1
  1. 1.IEEEAlbuquerqueUSA

Personalised recommendations