A Neuron Model Based on Hamilton Principle and Energy Coding

  • Yan Chuankui
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 145)

Abstract

The studies on neural network and dynamics analysis are done by lots of researchers while there is few about single neuron. We get a dynamical model based on Hamilton principle from neural physical circuit. The discharge of neuron can be simulated successfully. Furthermore, we discuss the system generalized energy consumption when the neuron is firing. The variety patterns of energy maybe contain some coding about information transmission between neurons.

Keywords

model Hamilton principle neuron coding energy function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lewicki, M.S.: Efficient coding of natural sounds. Nature Neurosci. 5, 356–363 (2002)CrossRefGoogle Scholar
  2. 2.
    Mickey, B.J., Middlebrooks, J.C.: Representation of auditory space by cortical neurons in awake cats. J. Neurosci. 23, 8649–8663 (2003)Google Scholar
  3. 3.
    Galan, R.F., Fourcaud-Trocme, N., Ermentrout, G., Urban, N.: Correlation-induced synchronization of oscillations in olfactory bulb neurons. J. Neurosci. 26, 3646–3655 (2006)CrossRefGoogle Scholar
  4. 4.
    Yan, C.K., Liu, S.Q.: The transitional function of DG to CA3 on hippocampus. Prog. Nat. Sci. 17, 1436–1444 (2007)MathSciNetGoogle Scholar
  5. 5.
    McCullock, W.S., Pitts, W.: A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 133, 115–133 (1943)CrossRefGoogle Scholar
  6. 6.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Science 79, 2554–2558 (1982)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hodgkin, A.L., Huxley, A.F.: A quentitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)Google Scholar
  8. 8.
    Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. In: Proc. IRE, vol. 50, pp. 2061–2070 (1962)Google Scholar
  9. 9.
    FitzHugh, R.: Mathematical models of excitation and propagation in nerve. In: Schwan, H.P. (ed.) Biological Engineering, pp. 1–85. McGraw-Hill, New York (1969)Google Scholar
  10. 10.
    Chay, T.R.: Chaos in three-variable model of an excitable cell. Physica. D. 16, 233–242 (1985)MATHCrossRefGoogle Scholar
  11. 11.
    Wang, Q.Y., Duan, Z.S., Lu, Q.S.: Average synchronzation and temporal order in a noisy neuronal network with couping delay. Chin. Phys. Lett. 24, 2759–2761 (2007)CrossRefGoogle Scholar
  12. 12.
    Izhikevich, E.M.: Int. J. Bifurcat. Chaos  10, 117 (2000)Google Scholar
  13. 13.
    Zhao, H.X., Ma, S.J., Shi, Y.: Higher-Order Lagrangian Equations of Higher-Order Motive Mechanical System. Theor. Phys. 49, 479–481 (2008)CrossRefGoogle Scholar
  14. 14.
    Attwell, D., Laughlin, S.B.: J. Cerebr. Blood F Met.  21, 1133 (2001); Sarpeshkar, R.: Neural Comput.  10, 1601 (1998) Google Scholar
  15. 15.
    Levy, W.B., Baxter, R.A.: Energy-efficient neural codes. Neural Comp. 8, 531–543 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  • Yan Chuankui
    • 1
    • 2
  1. 1.Institute for Cognitive Neurodynamics, School of ScienceEast China University of Science and TechnologyShanghaiChina
  2. 2.Department of Mathematics, School of ScienceHang Zhou Normal UniversityHangzhouChina

Personalised recommendations