Skip to main content

A Neuron Model Based on Hamilton Principle and Energy Coding

  • Conference paper

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 145))

Abstract

The studies on neural network and dynamics analysis are done by lots of researchers while there is few about single neuron. We get a dynamical model based on Hamilton principle from neural physical circuit. The discharge of neuron can be simulated successfully. Furthermore, we discuss the system generalized energy consumption when the neuron is firing. The variety patterns of energy maybe contain some coding about information transmission between neurons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewicki, M.S.: Efficient coding of natural sounds. Nature Neurosci. 5, 356–363 (2002)

    Article  Google Scholar 

  2. Mickey, B.J., Middlebrooks, J.C.: Representation of auditory space by cortical neurons in awake cats. J. Neurosci. 23, 8649–8663 (2003)

    Google Scholar 

  3. Galan, R.F., Fourcaud-Trocme, N., Ermentrout, G., Urban, N.: Correlation-induced synchronization of oscillations in olfactory bulb neurons. J. Neurosci. 26, 3646–3655 (2006)

    Article  Google Scholar 

  4. Yan, C.K., Liu, S.Q.: The transitional function of DG to CA3 on hippocampus. Prog. Nat. Sci. 17, 1436–1444 (2007)

    MathSciNet  Google Scholar 

  5. McCullock, W.S., Pitts, W.: A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 133, 115–133 (1943)

    Article  Google Scholar 

  6. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Science 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  7. Hodgkin, A.L., Huxley, A.F.: A quentitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  8. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. In: Proc. IRE, vol. 50, pp. 2061–2070 (1962)

    Google Scholar 

  9. FitzHugh, R.: Mathematical models of excitation and propagation in nerve. In: Schwan, H.P. (ed.) Biological Engineering, pp. 1–85. McGraw-Hill, New York (1969)

    Google Scholar 

  10. Chay, T.R.: Chaos in three-variable model of an excitable cell. Physica. D. 16, 233–242 (1985)

    Article  MATH  Google Scholar 

  11. Wang, Q.Y., Duan, Z.S., Lu, Q.S.: Average synchronzation and temporal order in a noisy neuronal network with couping delay. Chin. Phys. Lett. 24, 2759–2761 (2007)

    Article  Google Scholar 

  12. Izhikevich, E.M.: Int. J. Bifurcat. Chaos  10, 117 (2000)

    Google Scholar 

  13. Zhao, H.X., Ma, S.J., Shi, Y.: Higher-Order Lagrangian Equations of Higher-Order Motive Mechanical System. Theor. Phys. 49, 479–481 (2008)

    Article  Google Scholar 

  14. Attwell, D., Laughlin, S.B.: J. Cerebr. Blood F Met.  21, 1133 (2001); Sarpeshkar, R.: Neural Comput.  10, 1601 (1998)

    Google Scholar 

  15. Levy, W.B., Baxter, R.A.: Energy-efficient neural codes. Neural Comp. 8, 531–543 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Chuankui, Y. (2012). A Neuron Model Based on Hamilton Principle and Energy Coding. In: Gaol, F., Nguyen, Q. (eds) Proceedings of the 2011 2nd International Congress on Computer Applications and Computational Science. Advances in Intelligent and Soft Computing, vol 145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28308-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28308-6_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28307-9

  • Online ISBN: 978-3-642-28308-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics