Advertisement

Smith Normal Form Using Scaled Extended Integer ABS Algorithms

  • Effat Golpar-Raboky
  • Nezam Mahdavi-Amiri
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 145)

Abstract

Classes of integer ABS methods have recently been introduced for solving linear systems of Diophantine equations. The Smith normal form of a general integermatrix is a diagonal integer matrix, obtained by elementary nonsingular (unimodular) operations. Such a form may conveniently be used in solving integer systems of equations and integer linear programming problems. Here, we present a class of algorithms for computing the Smith normal form of an integer matrix. In doing this, we propose new ideas to develop a new class of extended integer ABS algorithms generating an integer basis for the integer null space of the matrix. Finally, we test our algorithms and report the obtained numerical results on randomly generated test problems.

Keywords

Integer Solution Diophantine Equation Integer Matrix Integer Linear Programming Problem Unimodular Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abafy, J., Spedicato, E.: ABS Projection Algorithms. Mathematical Techniques for Linear and Nonlinear Equations. Ellis Horwood, Chichester (1989)Google Scholar
  2. 2.
    Abaffy, J., Broyden, C.G., Spedicato, E.: A class of direct methods for linear equations. Numer. Math. 45, 361–378 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chen, Z., Dang, N.Y., Xue, Y.: A general algorithm for underdetermined linear systems. In: The Proceedings of the First International Conference on ABS Algorithms, Luoyang, China, pp. 1–13 (1992)Google Scholar
  4. 4.
    Dirichlet, P.G.L.: Beweis des Satzes, dass jede unbegrenzte arithmetische progression, deren erstes glied und differenz ganze zahlen ohne gemeinschaftlichen factor sind, unendlich viele primzahlen enthalt. Mathematische Werke 1, 313–342 (1837)Google Scholar
  5. 5.
    Esmaeili, H., Mahdavi-Amiri, N., Spedicato, E.: A class of ABS algorithms for Diophantine linear systems. Numer. Math. 90, 101–115 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Esmaeili, H., Mahdavi-Amiri, N., Spedicato, E.: Generationg the integer null space and conditions for determination of an integer basis using the ABS algorithms. Bulletin of the Iranian Mathematical Society 27, 1–18 (2001)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Khorramizadeh, M., Mahdavi-Amiri, N.: Integer extended ABS algorithms and possible control of intermediate results for linear Diophantine systems. 4OR 7, 145–167 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Pohst, M., Zassenhaus, H.: Algorithmic Algebraic Number Theory. Cambridge University Press, New york (1989)Google Scholar
  9. 9.
    Rosser, J.B.: A note on the linear Diophantine equation. Amer. Math. Monthly 48, 662–666 (1941)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Smith, H.J.S.: On systems of linear indeterminate equations and congruences. Phil. Trans. Roy. Soc. London 151, 293–326 (1861)CrossRefGoogle Scholar
  11. 11.
    Spedicato, E., Bodon, E., Del Popolo, A., Mahdavi-Amiri, N.: ABS methods and ABSPACK for linear systems and optimization. A review. 4OR 1, 51–66 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Spedicato, E., Bodon, E., Zunquan, X., Mahdavi-Amiri, N.: ABS methods for continous and integer linear equations and optimization. CEJOR 18, 73–95 (2010)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Faculty of Mathemetical SciencesSharif University of TechnologyTehranIran

Personalised recommendations