Advertisement

Algorithm for the Vertex-Distinguishing Total Coloring of Complete Graph

  • Li Jingwen
  • Xu Xiaoqing
  • Yan Guanghui
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 145)

Abstract

A new algorithm whose name is algorithm of classified order coloring is proposed on the base of the characteristics of the vertex-distinguishing total coloring of complete graph in this paper. All of its elements are classified according to some rules and then are colored in proper sequence. Moreover, a relate-lock-table is presented to judge whether the results are correct. The experimental results show that the algorithm can effectively solve the vertex-distinguishing total coloring of complete graph.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, Z.-F., Qiu, P.-X., Xu, B.-G., et al.: Vertex-distinguishing toal coloring of graphs. Ars. Com. 87, 33–45 (2008)MathSciNetMATHGoogle Scholar
  2. 2.
    Burris, A.C., Schelp, R.H.: Vertex-distinguishing proper edge-colorings. J. of Graph Theory 26(2), 73–82 (1997)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Balister, P.N., Gyori, E., Lehel, J., et al.: Adjacent vertex distinguish edge-colorings. Journal on Discrete Mathematics 21(1), 237–250 (2007)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Hatami, H.: Δ+300 is a bound on the adjacent vertex distinguishing edge chromatic number. Journal of Combinatorial Theory(Series B) 95(2), 246–256 (2005)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Zhong, Z.-F., Liu, L.-Z., Wang, J.-F.: Adjacent strong edge coloring of graphs. Appl. Math. Lett. 15(5), 623–626 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Zhang, Z.-F., Li, J.-W., Chen, X.-E., et al.: D(β)-vertex-distinguishing proper edge coloring of graphs. Acta Mathematica Sinica 49(3), 703–708 (2006)Google Scholar
  7. 7.
    Zhang, Z.-F., Li, J.-W., Chen, X.-E., et al.: D(β)-vertex-distinguishing proper total coloring of graphs. Sci. China 49(10), 1430–1440 (2006)Google Scholar
  8. 8.
    Bondy, J.A., Marty, U.S.R.: Graph theory with application. The Macmillan Press Ltd., New York (1976)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.College of Information and Electronic EngineeringLanzhou Jiaotong UniversityLanzhouChina

Personalised recommendations