Flow Field Analysis and Contour Detection of a Natural Owl Wing Using PIV Measurements

  • Andrea Winzen
  • Stephan Klän
  • Michael Klaas
  • Wolfgang Schröder
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 119)

Abstract

A technical three-dimensional wing model based on the geometry of the wing of a barn owl was designed to investigate the aerodynamic characteristics of this wing, which is known to be perfectly adapted to the requirements of silent flight. This wing model possesses the basic geometry of the barn owl wing. To understand the impact of the owl-based shape plus the owl-specific anatomic elements on the flow field and to further analyze the characteristic flow field that enables the owl to fly at low speeds and thus silently, a prepared natural owl wing was investigated in a wind tunnel. Measurements using particle-image velocimetry were performed on the model and on the natural wing to investigate characteristic flow phenomena such as separation, transition, and reattachment. Additionally, changes of the geometry, i.e., the maximum chord line-to-upper surface distance normalized by the chord length and the deflection of the natural owl wing, are described and discussed in detail to understand the resulting fluid-structure interaction. Unlike the rigid model, the natural owl wing possesses a high flexibility leading to a mutual influence of the wing structure and the surrounding flow field. This has to be investigated to understand the complex physical mechanisms that allow the highly efficient flight of the owl.

Keywords

Chord Length Separation Bubble Suction Side Reynolds Shear Stress Freestream Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachmann, T., Klän, S., Baumgartner, W., Klaas, M., Schröder, W., Wagner, H.: Morphometric characterisation of wing feathers of the barn owl tyto alba pratincola and the pigeon columbia livia. Frontiers in Zoology 4.23 (2007), doi:10.1186/1742-9994-4-23Google Scholar
  2. 2.
    Biesel, W., Butz, H., Nachtigall, W.: Erste Messungen der Flügelgeometrie bei frei gleitfliegenden Haustauben (columbia livia var. domestica) unter Benutzung neu ausgearbeiteter Verfahren der Windkanaltechnik und der Stereophotogrammetrie. Biona-Report 3, 139–160 (1985)Google Scholar
  3. 3.
    Burgmann, S., Schröder, W.: Investigation of the vortex induced unsteadiness of a separation bubble via time-resolved and scanning PIV measurements. Experiment in Fluids 45(4), 675–691 (2008), doi:10.1007/s00348-008-0548-7CrossRefGoogle Scholar
  4. 4.
    Carmichael, B.H.: Low reynolds number airfoil survey. NASA CR-165803 (1981)Google Scholar
  5. 5.
    Friedl, A.: Video recordings of a natural flying barn owl. Personal Communication (2009)Google Scholar
  6. 6.
    Graham, R.R.: The silent flight of owls. Journal of the Royal Aeronautical Society 38, 837–843 (1934)Google Scholar
  7. 7.
    Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low reynolds number. Journal of Fluid Mechanics 177, 133–166 (1987)CrossRefMATHGoogle Scholar
  8. 8.
    Klän, S.: Experimental analysis of the flow over an owl-based wing geometry. Ph.D. thesis, RWTH Aachen University, Aachen, Germany (2010)Google Scholar
  9. 9.
    Klän, S., Bachmann, T., Klaas, M., Wagner, H., Schröder, W.: Experimental analysis of the flow field over a novel owl based airfoil. Experiments in Fluids 46, 975–989 (2008), doi:10.1007/s00348-008-0600-7CrossRefGoogle Scholar
  10. 10.
    Klän, S., Bachmann, T., Klaas, M., Wagner, H., Schröder, W.: Surface structure and dimensional effects on the aerodynamics of an owl-based wing model. Submitted to European Journal of Mechanics B - Fluids (2011)Google Scholar
  11. 11.
    Lilley, G.M.: A study of the silent flight of the owl. In: 4th AIAA/CEAS Aeroacoustics Conference, AIAA 98-2340 (1998)Google Scholar
  12. 12.
    Liu, T., Kuykendoll, K., Rhew, R., Jones, S.: Avian wing geometry and kinematics. AIAA Journal 44(5), 954–963 (2006)CrossRefGoogle Scholar
  13. 13.
    Mebs, T., Scherzinger, W.: Die Eulen Europas. Franckh-Kosmos Verlag (2000)Google Scholar
  14. 14.
    Nachtigall, W.: Der Taubenflügel in Gleitflugstellung: Geometrische Kenngrößen der Flügelprofile und Luftkrafterzeugung. Journal of Ornithology 120(1), 30–40 (1979), doi:10.1007/BF01647339CrossRefGoogle Scholar
  15. 15.
    Sandham, N.D.: Transitional separation bubbles and unsteady aspects of aerofoil stall. The Aeronautical Journal 112, 395–404 (2008)Google Scholar
  16. 16.
    Thorpe, W.H., Griffin, D.R.: Lack of ultrasonic components in the flight noise of owls. Nature 193, 594–595 (1962)CrossRefGoogle Scholar
  17. 17.
    Yuan, W., Khalid, M., Windte, J., Radespiel, R.: An investigation of low-reynolds-number flows past airfoils. In: 23rd AIAA Applied Aerodynimcs Conference, AIAA-2005-4607, Toronto (2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Andrea Winzen
    • 1
  • Stephan Klän
    • 1
  • Michael Klaas
    • 1
  • Wolfgang Schröder
    • 1
  1. 1.Institute of AerodynamicsRWTH Aachen UniversityAachenGermany

Personalised recommendations