Advertisement

Hydrodynamic Perception in Pinnipeds

  • Wolf Hanke
  • Sven Wieskotten
  • Benedikt Niesterok
  • Lars Miersch
  • Matthias Witte
  • Martin Brede
  • Alfred Leder
  • Guido Dehnhardt
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 119)

Abstract

The vibrissal system of pinnipeds such as harbor seals (Phoca vitulina) or California sea lions (Zalophus californianus) serves not only for the detection and identification of objects by direct touch, but also detect and analyze water movements (hydrodynamic stimuli). These two species represent two different types of vibrissae, one with an undulated outline (harbor seal) and one with a smooth outline (sea lion). In our recent set of studies, we analyzed the hydrodynamic stimuli generated by stationary fish and by escaping fish, and tested the ability of pinnipeds to analyze artificial hydrodynamic stimuli that share certain features with natural hydrodynamic stimuli. Biomechanical studies of isolated vibrissae in a flow tank show different signal-to noise ratios for the two species that are consistent with their different performance in behavioral experiments, and can be explained by fluid-structure interactions.

Keywords

Particle Image Velocimetry Vortex Ring Harbor Seal Phoca Vitulina Zalophus Californianus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blake, R.W.: Functional design and burst-and-coast swimming in fishes. Canad. J. Zool. 61, 2491–2494 (1983)CrossRefGoogle Scholar
  2. 2.
    Bublitz, A., Dehnhardt, G., Hanke, W.: Water movements from stationary fishes and their relevance to prey detection by marine mammals. In: Conference of the European Cetacean Society, Stralsund (2010)Google Scholar
  3. 3.
    Bublitz, A., Dehnhardt, G., Hanke, W.: Breathing currents of stationary fish and their possible relevance to prey detection (in preparation)Google Scholar
  4. 4.
    Carvell, G.E., Simons, D.J.: Biometric analyses of vibrissal tactile discrimination in the rat. J. Neurosci. 10, 2638–2648 (1990)Google Scholar
  5. 5.
    Catania, K.C., Hare, J.F., Campbell, K.L.: Water shrews detect movement, shape, and smell to find prey underwater. Proc. Natl. Acad. Sci. USA 105, 571–576 (2008)CrossRefGoogle Scholar
  6. 6.
    Dehnhardt, G., Mauck, B.: Mechanoreception in secondarily aquatic vertebrates. In: Thewissen, J.G.M., Nummela, S. (eds.) Sensory Evolution on the Threshold: Adaptations in Secondarily Aquatic Vertebrates, pp. 295–314. University of California Press, Berkely (2008)Google Scholar
  7. 7.
    Dehnhardt, G., Mauck, B., Bleckmann, H.: Seal whiskers detect water movements. Nature 394, 235–236 (1998)CrossRefGoogle Scholar
  8. 8.
    Dehnhardt, G., Mauck, B., Hanke, W.: Hydrodynamic perception in seals. In: Ilg, U., Bülthoff, H.H., Mallot, A. (eds.) Dynamic Perception, Akademische Verlagsgesellschaft Aka GmbH, Berlin (2004)Google Scholar
  9. 9.
    Dehnhardt, G., Mauck, B., Hanke, W., Bleckmann, H.: Hydrodynamic trail following in harbor seals (Phoca vitulina). Science 293, 102–104 (2001)CrossRefGoogle Scholar
  10. 10.
    Gescheider, G.A.: Psychophysics. Method and Theory. Lawrence Erlbaum Associates, Hillsdale (1976)Google Scholar
  11. 11.
    Ginter, C.C., Fish, F.E., Marshall, C.D.: Morphological analysis of the bumpy profile of phocid vibrissae. Mar. Mamm. Sci. 26, 733–743 (2010)Google Scholar
  12. 12.
    Gläser, N., Wieskotten, S., Otter, C., Dehnhardt, G., Hanke, W.: Hydrodynamic trail following in a California sea lion (Zalophus californianus). J. Comp. Physiol. A 197, 141–151 (2011)CrossRefGoogle Scholar
  13. 13.
    Hanke, W.: Hydrodynamische Spuren schwimmender Fische und ihre mögliche Bedeutung für das Jagdverhalten fischfressender Tiere. PhD thesis, p. 121. Institut für Zoologie. Rheinische Friedrich-Wilhelms-Universität, Bonn (2001)Google Scholar
  14. 14.
    Hanke, W.: Sensorische Grundlagen des Beutefangverhaltens aquatischer Säuger - Sensory basis of prey capture in aquatic mammals. Habilitation thesis. Institute for Biosciences. Rostock University, Rostock (2010)Google Scholar
  15. 15.
    Hanke, W., Bleckmann, H.: The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) measured with Scanning Particle Image Velocimetry. J. Exp. Biol. 207, 1585–1596 (2004)CrossRefGoogle Scholar
  16. 16.
    Hanke, W., Brücker, C., Bleckmann, H.: The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J. Exp. Biol. 203, 1193–1200 (2000)Google Scholar
  17. 17.
    Hanke, W., Witte, M., Miersch, L., Brede, M., Oeffner, J., Michael, M., Hanke, F., Leder, A., Dehnhardt, G.: Harbor seal vibrissa morphology suppresses vortex-induced vibrations. J. Exp. Biol. 213, 2665–2672 (2010)CrossRefGoogle Scholar
  18. 18.
    Krüger, Y., Wieskotten, S., Miersch, L., Dehnhardt, G., Hanke, W.: Perception of vortex rings by stationary harbour seals (Phoca vitulina). Flow sensing in air and water. University of Bonn (2011)Google Scholar
  19. 19.
    Ling, J.K.: Vibrissae of marine mammals. In: Harrison, R.J. (ed.) Functional Anatomy of Marine Mammals, pp. 387–415. Academic Press, London (1977)Google Scholar
  20. 20.
    Miersch, L., Hanke, W., Wieskotten, S., Hanke, F.D., Oeffner, J., Leder, A., Brede, M., Witte, M., Dehnhardt, G.: Flow sensing by pinniped whiskers. Phil. Trans. R Soc. B 366, 3077–3084 (2011)CrossRefGoogle Scholar
  21. 21.
    Nauen, J.C., Lauder, G.V.: Quantification of the wake of a rainbow trout using three-dimensional stereoscopic particle image velocimetry. J. Exp. Biol. 205, 3271–3279 (2002)Google Scholar
  22. 22.
    Niesterok, B.: Hydrodynamics and kinematics of fast starts in teleost fish and their ecological meaning for predator prey interactions. Institute for Biosciences. Rostock University, Rostock (2011)Google Scholar
  23. 23.
    Niesterok, B., Dehnhardt, G., Hanke, W.: Hydrodynamic patterns from fast starts in rainbow trout and their possible relevance to predator-prey interactions (2011) (in prep.)Google Scholar
  24. 24.
    Schulte-Pelkum, N., Wieskotten, S., Hanke, W., Dehnhardt, G., Mauck, B.: Tracking of biogenic hydrodynamic trails in a harbor seal (Phoca vitulina). J. Exp. Biol. 210, 781–787 (2007)CrossRefGoogle Scholar
  25. 25.
    Tytell, E.D., Lauder, G.V.: Hydrodynamics of the escape response in bluegill sunfish, Lepomis macrochirus. J. Exp. Biol. 211, 3359–3369 (2008)CrossRefGoogle Scholar
  26. 26.
    Webb, P.W.: Acceleration performance of rainbow trout Salmo gairdneri and green sunfish Lepomis cyanellus. J. Exp. Biol. 63, 451–465 (1975)Google Scholar
  27. 27.
    Webb, P.W.: Effect of size on fast-start performance of rainbow trout Salmo gairdneri, and a consideration of piscivorous predator-prey interactions. J. Exp. Biol. 65, 157–177 (1976)Google Scholar
  28. 28.
    Weihs, D.: Energetic advantages of burst swimming of fish. J. Theor. Biol. 48, 215–229 (1974)CrossRefGoogle Scholar
  29. 29.
    Westerweel, J.: Fundamentals of Digital Particle Image Velocimetry. Meas. Sci. Technol. 8, 1379–1392 (1997)CrossRefGoogle Scholar
  30. 30.
    Wieskotten, S., Dehnhardt, G., Mauck, B., Miersch, L., Hanke, W.: Hydrodynamic determination of the moving direction of an artificial fin by a harbour seal (Phoca vitulina). J. Exp. Biol. 213 (2010a)Google Scholar
  31. 31.
    Wieskotten, S., Dehnhardt, G., Mauck, B., Miersch, L., Hanke, W.: The impact of glide phases on the trackability of hydrodynamic trails in harbour seals (Phoca vitulina). J. Exp. Biol. 213, 3734–3740 (2010b)CrossRefGoogle Scholar
  32. 32.
    Wieskotten, S., Mauck, B., Miersch, L., Dehnhardt, G., Hanke, W.: Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina). J. Exp. Biol. 214, 1922–1930 (2011)CrossRefGoogle Scholar
  33. 33.
    Willert, C.E., Gharib, M.: Digital particle image velocimetry. Exp. Fluids 10, 181–193 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Wolf Hanke
    • 1
  • Sven Wieskotten
    • 1
  • Benedikt Niesterok
    • 1
  • Lars Miersch
    • 1
  • Matthias Witte
    • 2
  • Martin Brede
    • 2
  • Alfred Leder
    • 2
  • Guido Dehnhardt
    • 1
  1. 1.Institute for Biosciences, Sensory and Cognitive EcologyRostock UniversityRostockGermany
  2. 2.Fluid MechanicsRostock UniversityRostockGermany

Personalised recommendations