Analysis of the Relation between Skin Morphology and Local Flow Conditions for a Fast-Swimming Dolphin

  • Vadim Pavlov
  • Donald Riedeberger
  • Ulrich Rist
  • Ursula Siebert
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 119)


The dolphin skin close to the anisotropic compliant wall design could potentially reduce the friction drag. The goal of this work was to study the relation between local flow conditions around dolphin model and parameters of skin morphology relevant in flow/skin interface. Three-dimensional CAD models presenting authentic geometry of fast-swimming common dolphin Delphinus delphis and low-swimming harbor porpoise Phocaena phocaena were constructed. CFD study of the flow parameters were carried out for the natural range of dolphin swimming velocities. The results of this study allow to conclude that the stream-wise variability of the dolphin skin structure appears to be associated with the streamlined body geometry and corresponding gradients of the velocity and pressure rather than with specific local Re numbers. The hypotheses on different optimal conditions for potential drag-reducing properties of dolphin skin are proposed.


Drag Reduction Harbor Porpoise Friction Drag Common Dolphin Compliant Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gray, J.: Studies in Animal Locomotion VI. The Propulsive Powers of the Dolphin. J. Exp. Biol. 13, 192–199 (1936)Google Scholar
  2. 2.
    Kramer, M.O.: Boundary Layer Stabilization by Distributed Damping. J. Amer. Soc. Nav. Eng. 72, 25–33 (1960a)Google Scholar
  3. 3.
    Kramer, M.O.: The Dolphins’ Secret. New. Sci. 7, 1118–1120 (1960b)Google Scholar
  4. 4.
    Sokolov V.E.: Integument of mammals. Nauka, Moscow (in Russian) (1973)Google Scholar
  5. 5.
    Sokolov, V.E.: Some Similarities and Dissimilarities in the Structure of the Skin Among the Members of the Suborders Odontoceti and Mystacoceti (Cetacea). Nature 185, 745–747 (1960)CrossRefGoogle Scholar
  6. 6.
    Parry, D.A.: The Swimming of Whales and a Discussion of Gray’s Paradox. J. Exp. Biol. 26, 24–34 (1949a)Google Scholar
  7. 7.
    Aleyev, Y.G.: Nekton. Junk, The Hague (1977)Google Scholar
  8. 8.
    Haun, J.E., Hendricks, E.W., Borkat, F.R., Kataoka, R.W., Carder, D.A., Chun, N.K.: Dolphin Hydrodynamics: Annual Report FY 82. NOSC* TR935. SSC San Diego, CA (1983)Google Scholar
  9. 9.
    Pershin, S.V.: Fundamentals of hydrobionics. Sudostroyeniye, Leningrad (1988) (in Russian)Google Scholar
  10. 10.
    Toedt, M.E., Reuss, L.E., Dillaman, R.M., Pabst, D.A.: Collagen and elastin arrangement in the blubber of common dolphin (Delphinus delphis). Am. Zool. 37, 56A (1997)Google Scholar
  11. 11.
    Hamilton, J.L., McLellan, W.A., Pabst, D.A.: Functional Mor-phology of Harbor Porpoise (Phocoena phocoena) Tailstock Blubber. Amer. Zool. 38, 203A (1998)Google Scholar
  12. 12.
    Palmer, E., Weddell, G.: The relation between structure, innervation and function of the skin of the bottlenose dolphin (Tursiops truncatus). Proc. Zool. Soc. Lond. 143, 553–568 (1964)CrossRefGoogle Scholar
  13. 13.
    Purves, P.E.: The Structure of the Flukes in Relation to Laminar Flow in Cetaceans. Z. Sдugertierkd 34, 1–8 (1969)Google Scholar
  14. 14.
    Surkina, R.M.: Structure and function of the skin muscles of dol-phins. Bionika 5, 81–87 (1971) (in Russian)Google Scholar
  15. 15.
    Babenko, V.V., Koslov, L.F., Pershin, S.V., Sokolov, V.Y., Tomilin, A.G.: Self-adjustment of Skin Dampening in Cetaceans in Active Swimming. Bionika 16, 3–10 (1982) (in Russian) Google Scholar
  16. 16.
    Babenko, V.V.: Investigating the Skin Elasticity of Live Dolphins. Bionika 13, 43–52 (1979) (in Russian)Google Scholar
  17. 17.
    Pabst, D.A., McLellan, W.A., Gosline, J.G., Piermarini, P.M.: Morphology and Mechanics of Dolphin Blubber. Amer. Zool. 35, 44A (1995)Google Scholar
  18. 18.
    Romanenko, E.V.: Fish and Dolphin Swimming. Pensoft, Sofia (2002)Google Scholar
  19. 19.
    Rohr, J., Latz, M.I., Fallon, S., Nauen, J.C., Hendricks, E.W.: Experimental Approaches Towards Interpreting Dolphin-stimulated Bioluminescence. J. Exp. Biol. 201, 1447–1460 (1998)Google Scholar
  20. 20.
    Haider, M., Lindsley, D.B.: Microvibrations in Man and Dolphin. Science 146, 1181–1183 (1964)CrossRefGoogle Scholar
  21. 21.
    Ridgway, S.H., Carder, D.A.: Features of Dolphin Skin with Potential Hydrodynamic Importance. IEEE Eng. Med. Biol. 12, 83–88 (1993)CrossRefGoogle Scholar
  22. 22.
    Babenko, V.V., Carpenter, P.W.: Dolphin hydrodynamics Flow Past Highly Compliant Boundaries and in Collapsible Tubes. In: Carpenter, P.W., Pedley, T.J. (eds.), ch. 13, pp. 293–323. Kluwer, Dordrecht (2003)Google Scholar
  23. 23.
    Nagamine, H., Yamahata, K., Hagiwara, Y., Matsubara, R.: Tur-bulence modification by compliant skin and strata-corneas desquamation of a swimming dolphin. J. Turb. 18, 1–25 (2004)Google Scholar
  24. 24.
    Gad-el-Hak, M.: Compliant coatings: a decade of progress. Appl. Mech. Rev. 49, 147–157 (1996)CrossRefGoogle Scholar
  25. 25.
    Choi, K.S., Yang, X., Clayton, B.R., Glover, E.J., Atlar, M., Semenov, B.N., Kulik, V.M.: Turbulent drag reduction using compliant surfaces. Proc. R. Soc. A 453, 2229–2240 (1997)CrossRefzbMATHGoogle Scholar
  26. 26.
    Sokolov, V.E.: Structure of the integument of some cetaceans. Byulleten’ Moskovskogo Obshestva Ispitatelej Prirodi Otdel Biologii 60, 45–60 (1955) (in Russian) Google Scholar
  27. 27.
    Carpenter, P.W., Davies, C., Lucey, A.D.: Hydrodynamics and compliant walls: does the dolphin have a secret? Curr. Sci. 79, 758–765 (2000)Google Scholar
  28. 28.
    Grosskreutz, R.: Wechselwirkungen zwischen turbulenten Grenzschichten und weichen Wanden. MPI fьr Strцmungsforschung und der AVA Göttingen Mitt 53 (1971)Google Scholar
  29. 29.
    Stromberg, M.W.: Dermal–epidermal relations in the skin of bot-tlenose dolphin (Tursiops truncatus). Anat. Histol. Embryol. 18, 1–13 (1989)CrossRefGoogle Scholar
  30. 30.
    Carpenter, P.W., Morris, P.J.: The effect of anisotropic wall compliance on boundary-layer stability and transition. J. Fluid Mech. 288, 171–223 (1990)CrossRefGoogle Scholar
  31. 31.
    Yeo, K.S.: The hydrodynamic stability of boundary-layer flow over a class of anisotropic compliant walls. J. Fluid Mech. 220, 125–160 (1990)CrossRefzbMATHGoogle Scholar
  32. 32.
    Riedeberger, D., Rist, U.: Numerical simulation of laminar-turbulent transition on a dolphin using the γ-Reθ model. In: Nagel, W.E., Kröner, D.B., Resch, M.M. (eds.) High Performance Computing in Science and Engineering 2011: Transactions of the High Performance Computing Center, Stuttgart (HLRS), Springer, Berlin (2011)Google Scholar
  33. 33.
    Aguilar Soto, N., Johnson, M.P., Madsen, P.T., Diaz, F., Dominguez, I., Brito, A., Tyack, P.: Cheetahs of the deep sea: Deep foraging sprints in short-finned pilot whales off Tenerife (Canary Islands). Journal of Animal Ecology 77, 936–947 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Vadim Pavlov
    • 1
  • Donald Riedeberger
    • 2
  • Ulrich Rist
    • 2
  • Ursula Siebert
    • 1
  1. 1.Institute of Terrestrial and Aquatic Wildlife ResearchUniversity of Veterinary Medicine Hannover, FoundationBüsumGermany
  2. 2.Institute of Aerodynamics and Gas DynamicsUniversity of StuttgartStuttgartGermany

Personalised recommendations