Advertisement

Learning from Dolphin Skin – Drag Reduction by Active Delay of Transition: Flow Control by Distributed Wall Actuation

  • Nikolas Goldin
  • Rudibert King
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 119)

Abstract

Control strategies for laminar flow control above a surface are investigated. A flexible membrane displaced by multiple piezo-polymer composite elements is used as actuator in wind-tunnel experiments. Direct methods of damping Tollmien-Schlichting waves are compared to a biomimetic approach imitating the dampingmechanisms of a compliant skin. In both cases, model predictive control algorithms are applied to control the multi-bar actuator segments. For the biomimetic approach, reduced models of compliant surfaces are developed and parametrized by direct optimization and according to numerically generated optimal wall properties. Damping results of up to 85% RMS value are achieved.

Keywords

Root Mean Square Wave Packet Model Predictive Control Wall Model Displacement Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baumann, M., Nitsche, W.: Investigation of active control of Tollmien-Schlichting waves on a wing. In: Henkes, R., van Ingen, J. (eds.) Transitional Boundary Layers in Aeronautics, pp. 89–90. KNAW (1996)Google Scholar
  2. 2.
    Carpenter, P.W., Garrad, A.D.: The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien-Schlichting instabilities. J. Fluid Mech. 155, 465–510 (1985)CrossRefzbMATHGoogle Scholar
  3. 3.
    Carpenter, P.W., Morris, P.J.: The effect of anisotropic wall compliance on boundary-layer stability and transition. J. Fluid Mech. 218, 171–223 (1990)CrossRefzbMATHGoogle Scholar
  4. 4.
    Gad-el-Hak, M.: Flow control: passive, active, and reactive flow management. Cambridge Univ. Pr. (2000)Google Scholar
  5. 5.
    Haller, D., Paetzold, A., Losse, N., Neiss, S., Peltzer, I., Nitsche, W., King, R., Woias, P.: Piezo-polymer-composite unimorph actuators for active cancellation of flow instabilities across airfoils. J. Intel. Mat. Syst. Str. 22(5), 465–478 (2011), doi:10.1177/1045389X10395794CrossRefGoogle Scholar
  6. 6.
    Haller, D.: Piezo-Polymer-Composite Actuators - Design, Nonlinear Characterization and Application for Active Cancellation of Flow Instabilities. PhD thesis, IMTEK, Universität Freiburg (2011)Google Scholar
  7. 7.
    King, R., Aleksic, K., Gelbert, G., Losse, N., Muminovic, R., Brunn, A., Nitsche, W., Bothien, M.R., Moeck, J.P., Paschereit, C.O., Noack, B.R., Rist, U., Zengl, M.: Model predictive flow control. In: 4th AIAA Flow Control Conference, AIAA Paper 2008-3975 (2008)Google Scholar
  8. 8.
    Pavlov, V.V.: Dolphin skin as a natural anisotropic compliant wall. Bioinsp. Biomim. 1, 31–40 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Fachgebiet Mess-und RegelungstechnikTU BerlinBerlinGermany

Personalised recommendations