Skip to main content

Theoretical and Experimental Investigations of Amoeboid Movement and First Steps of Technical Realisation

  • Chapter
Nature-Inspired Fluid Mechanics

Abstract

We report about the investigation of the amoeboid locomotion at Amoeba proteus. Based on the detailed experimental study of the internal cytoplasm flow and the variation of the contour of the amoeba with optical flow measurement techniques like particle image velocimetry (PIV) we found characteristic velocity fields and motions of the center of mass. Furthermore a peripheral cell model is developed, in which a contractile backward flow of actin-myosin in the cortex stabilizes cell polarity and locomotion by inducing more protrusions in the front and stronger retraction in the rear. The results from the experimental and theoretical study were used to realise prototypes of locomotion systems, composed of silicon elastomer body with controlled elasticity and driven by a magnetic system, based on amoeboid motion principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rogers, S.S., Waigh, T.A., Lu, J.R.: Intracellular microrheology of motile Amoeba proteus. Biophys. J. 94, 3313–3322 (2008)

    Article  Google Scholar 

  2. Stossel, T.P.: On the crawling of animal cells. Science 260, 1086–1094 (1993)

    Article  Google Scholar 

  3. Condeelis, J.: Life at the leading edge: formation of cell protrusion. Annu. Rev. Cell. Biol. 9, 414–440 (1993)

    Article  Google Scholar 

  4. Mitchison, T.J., Cramer, L.P.: Actin-based cell motility and cell locomotion. Cell 84, 371–379 (1996)

    Article  Google Scholar 

  5. Pomorski, P., Krzeminski, A., Wasik, A., Wierzbicka, K., Baranska, J., Klopocka, W.: Actin dynamics in Amoeba proteus motility. Protoplasma 231, 31–41 (2007)

    Article  Google Scholar 

  6. Patrick, Y.J., Peter, A.P., Scott, A.W., Elliot, L.E.: A mechanical function of myosin II in cell motility. J. of Cell Sci. 108, 387–393 (1995)

    Google Scholar 

  7. Alt, W., Dembo, M.: Cytoplasm dynamics and cell motion: two-phase flow models. Math. Biosciences 156, 207–228 (1999)

    Article  MATH  Google Scholar 

  8. Kuusela, E., Alt, W.: Continuum model of cell adhesion and migration. J. Math. Biol. 58, 135–161 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Zimmermann, K., Zeidis, I., Behn, C.: Mechanics of Terrestrial Locomotion – With a Focus on Non-pedal Motion Systems. Springer, Berlin (2009)

    MATH  Google Scholar 

  10. Zimmermann, K., Naletova, V.A., Zeidis, I., Böhm, V., Kolev, E.: Modelling of lo-comotion systems using deformable magnetizable media. J. Physics: Condens. Matter 18, 2973–2983 (2006)

    Google Scholar 

  11. Zimmermann, K., Böhm, V.: A contribution to the amoeboid locomotion of mobile robots. In: Proc. of the 41st Int. Symp. on Robotics, München, pp. 1152–1157 (2010)

    Google Scholar 

  12. Raffel, M., Willert, C.E., Kompenhans, J.: Particle Image Velocimetry: A Practical Guide. Springer, Heidelberg (1997)

    Google Scholar 

  13. Korohoda, W., Mycielska, M., Janda, E., Madeja, Z.: Immediate and long-term galvanotactic responses of amoeba proteus to electric fields. Cell Motil. Cytoskeleton 45, 10–26 (2000)

    Article  Google Scholar 

  14. Teixeira-Pinto, A.A., Nejelski Jr., L.L., Cutler, J.L., Heller, J.H.: The behavior of unicellular organisms in an electromagnetic field. Exp. Cell Res. 20, 548–564 (1960)

    Article  Google Scholar 

  15. Abramson, H.A., Moyer, L.S., Gorin, M.H.: Electrophoresis of proteins and the chem-istry of cell surfaces. Reinhold, New York (1942)

    Google Scholar 

  16. Seaman, G.V.F.: Electrophoresis using a cylindrical chamber. In: Ambrose, E.J. (ed.) Cell Electrophoresis, pp. 4–21. J&A. Churchill Ltd., London (1965)

    Google Scholar 

  17. Friedl, P.: Prespecification and plasticity; shifting mechanisms of cell migration. Curr. Opin. Cell Biol. 16, 14–23 (2004)

    Article  Google Scholar 

  18. Möhl, C.: Modellierung von Adhäsions- und Cytoskelett-Dynamik in Lamellipodien migratorischer Zellen. Diploma thesis. University Bonn (2005)

    Google Scholar 

  19. Verkhovsky, A.B., Svitkina, T.M., Borisy, G.G.: Self-polarization and directional motility of cytoplasm. Curr. Biol. 9, 11–20 (1999)

    Article  Google Scholar 

  20. Wolgemuth, C.W., Stajic, J., Mogilner, A.: Redundant mechanisms for stable cell locomotion revealed by minimal models. Biophys. J. 101, 545–553 (2011)

    Article  Google Scholar 

  21. Jilkine, A., Edelstein-Keshet, L.: A comparison of mathematical models for polarization of single eukariotic cells in response to guided cues. PLoS Comput. Biol. 7(4) (2011)

    Google Scholar 

  22. Alt, W., Bock, M., Möhl, C.: Coupling of cytoplasm and adhesion dynamics determines cell polarization and locomotion. In: Chauviere, A., Preziosi, L., Verdier, C. (eds.) Cell Mechanics: From Single Cell-Based Models to Multiscale Modeling, pp. 89–131. Taylor & Francis (2010)

    Google Scholar 

  23. Bereiter-Hahn, J., Lüers, H.: Subcellular tension fields and mechanical resistance of the lamella front related to the direction of locomotion. Cell Biochem. Biophys. 29, 243–262 (1998)

    Article  Google Scholar 

  24. Bandura, J.: Simulation eines mechanischen Roboter-Modells zur Zellmigration. Diploma thesis. University Bonn (2008)

    Google Scholar 

  25. Alt, W., Tranquillo, R.T.: Protrusion-retraction dynamics of an annular lamellipodial seam. In: Alt, W., Dunn, G., Deutsch, A. (eds.) Dynamics of Cell and Tissue Motion, pp. 73–81. Birkhäuser, Basel (1997)

    Chapter  Google Scholar 

  26. Schneid, B.: Simulation der Migration von Keratinozyten mit Fokus auf die Zytoplasma-Dynamik. Bachelor thesis. University Bonn (to appear, 2012)

    Google Scholar 

  27. Østergaard, E.H., Christensen, D.J., Eggenberger, P., Taylor, T., Ottery, P., Hautop Lund, H.: HYDRA: From Cellular Biology to Shape-Changing Artefacts. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 275–281. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  28. Murata, S., Kurokawa, H.: Self-Reconfigurable Robots. IEEE Robotics & Automation Magazine, 71–78 (March 2007)

    Google Scholar 

  29. Ishiguro, A., Umedachi, T., Kitamura, T., Nakagaki, T., Kobayashi, R.: A Fully Decentralized Morphology Control of an Amoeboid Robot by Exploiting the Law of Conservation of Protoplasmic Mass. Distributed Autonomous Robotic Systems 8, 193–202 (2009)

    Google Scholar 

  30. Umedachi, T., Takeda, K., Nakagaki, T., Kobayashi, R., Ishiguro, A.: Fully decentralized control of a soft-bodied robot inspired by true slime mold. Biol. Cybern. 102, 261–269 (2010)

    Article  Google Scholar 

  31. Hong, D.W., Ingram, M., Lahr, D.: Whole Skin Locomotion Inspired by Amoeboid Motility Mechanisms. ASME J. of Mechanisms and Robotics 1/011015, 1–7 (2009)

    Google Scholar 

  32. Steltz, E., Mozeika, A., Rodenberg, N., Brown, E., Jaeger, H.M.: JSEL - Jamming Skin Enabled Locomotion. In: Proc. of the IEEE/RSJ Int. Conf. on Int. Robots and Systems, St. Louis, pp. 5672–5677 (2009)

    Google Scholar 

  33. Hou, J., Luo, M., Mei, T.: The design and control of amoeba-like robot. In: Proc. of the IEEE Int. Conf. on Computer Application and System Modeling (ICCASM 2010), Taiyuan, pp. V188–V191 (2010)

    Google Scholar 

  34. Tortora, G., Caccavaro, S., Valdastri, P., Menciassi, A., Dario, P.: Design of an autonomous swimming miniature robot based on a novel concept of magnetic actuation. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, Anchorage, pp. 1592–1597 (2010)

    Google Scholar 

  35. Kim, S.H., Hashi, S., Ishiyama, K.: Methodology of Dynamic Actuation for Flexible Magnetic Actuator and Biomimetic Robotics Application. IEEE Transactions on Magnetics 46, 1366–1369 (2010)

    Article  Google Scholar 

  36. Zhou, G.Y., Jiang, Z.Y.: Deformation in magnetorheological elastomer and elastomer–ferromagnet composite driven by a magnetic field. J. Smart Mater. Struct. 13, 309–316 (2004)

    Article  Google Scholar 

  37. Varga, Z., Filipcsei, G., Zrinyi, M.: Magnetic field sensitive functional elastomers with tuneable elastic modulus. Polymer 47, 227–233 (2006)

    Article  Google Scholar 

  38. Zimmermann, K., Böhm, V., Zeidis, I.: Vibration-driven mobile robots based on magneto-sensitive elastomers. In: Proc. of the IEEE/ASME Int. Conf. on Intelligent Advanced Mechatronics, Budapest, pp. 730–735 (2011)

    Google Scholar 

  39. Liu, A., Nagel, S.: Jamming is not just cool any more. Nature 396, 21 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Alt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Alt, W. et al. (2012). Theoretical and Experimental Investigations of Amoeboid Movement and First Steps of Technical Realisation. In: Tropea, C., Bleckmann, H. (eds) Nature-Inspired Fluid Mechanics. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28302-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28302-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28301-7

  • Online ISBN: 978-3-642-28302-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics