Theoretical and Experimental Investigations of Amoeboid Movement and First Steps of Technical Realisation

  • Wolfgang AltEmail author
  • Valter Böhm
  • Tobias Kaufhold
  • Elka Lobutova
  • Christian Resagk
  • Danja Voges
  • Klaus Zimmermann
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 119)


We report about the investigation of the amoeboid locomotion at Amoeba proteus. Based on the detailed experimental study of the internal cytoplasm flow and the variation of the contour of the amoeba with optical flow measurement techniques like particle image velocimetry (PIV) we found characteristic velocity fields and motions of the center of mass. Furthermore a peripheral cell model is developed, in which a contractile backward flow of actin-myosin in the cortex stabilizes cell polarity and locomotion by inducing more protrusions in the front and stronger retraction in the rear. The results from the experimental and theoretical study were used to realise prototypes of locomotion systems, composed of silicon elastomer body with controlled elasticity and driven by a magnetic system, based on amoeboid motion principles.


Particle Image Velocimetry Rear Part Cytoplasmic Streaming Locomotion System Mechanical Compliance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rogers, S.S., Waigh, T.A., Lu, J.R.: Intracellular microrheology of motile Amoeba proteus. Biophys. J. 94, 3313–3322 (2008)CrossRefGoogle Scholar
  2. 2.
    Stossel, T.P.: On the crawling of animal cells. Science 260, 1086–1094 (1993)CrossRefGoogle Scholar
  3. 3.
    Condeelis, J.: Life at the leading edge: formation of cell protrusion. Annu. Rev. Cell. Biol. 9, 414–440 (1993)CrossRefGoogle Scholar
  4. 4.
    Mitchison, T.J., Cramer, L.P.: Actin-based cell motility and cell locomotion. Cell 84, 371–379 (1996)CrossRefGoogle Scholar
  5. 5.
    Pomorski, P., Krzeminski, A., Wasik, A., Wierzbicka, K., Baranska, J., Klopocka, W.: Actin dynamics in Amoeba proteus motility. Protoplasma 231, 31–41 (2007)CrossRefGoogle Scholar
  6. 6.
    Patrick, Y.J., Peter, A.P., Scott, A.W., Elliot, L.E.: A mechanical function of myosin II in cell motility. J. of Cell Sci. 108, 387–393 (1995)Google Scholar
  7. 7.
    Alt, W., Dembo, M.: Cytoplasm dynamics and cell motion: two-phase flow models. Math. Biosciences 156, 207–228 (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Kuusela, E., Alt, W.: Continuum model of cell adhesion and migration. J. Math. Biol. 58, 135–161 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Zimmermann, K., Zeidis, I., Behn, C.: Mechanics of Terrestrial Locomotion – With a Focus on Non-pedal Motion Systems. Springer, Berlin (2009)zbMATHGoogle Scholar
  10. 10.
    Zimmermann, K., Naletova, V.A., Zeidis, I., Böhm, V., Kolev, E.: Modelling of lo-comotion systems using deformable magnetizable media. J. Physics: Condens. Matter 18, 2973–2983 (2006)Google Scholar
  11. 11.
    Zimmermann, K., Böhm, V.: A contribution to the amoeboid locomotion of mobile robots. In: Proc. of the 41st Int. Symp. on Robotics, München, pp. 1152–1157 (2010)Google Scholar
  12. 12.
    Raffel, M., Willert, C.E., Kompenhans, J.: Particle Image Velocimetry: A Practical Guide. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Korohoda, W., Mycielska, M., Janda, E., Madeja, Z.: Immediate and long-term galvanotactic responses of amoeba proteus to electric fields. Cell Motil. Cytoskeleton 45, 10–26 (2000)CrossRefGoogle Scholar
  14. 14.
    Teixeira-Pinto, A.A., Nejelski Jr., L.L., Cutler, J.L., Heller, J.H.: The behavior of unicellular organisms in an electromagnetic field. Exp. Cell Res. 20, 548–564 (1960)CrossRefGoogle Scholar
  15. 15.
    Abramson, H.A., Moyer, L.S., Gorin, M.H.: Electrophoresis of proteins and the chem-istry of cell surfaces. Reinhold, New York (1942)Google Scholar
  16. 16.
    Seaman, G.V.F.: Electrophoresis using a cylindrical chamber. In: Ambrose, E.J. (ed.) Cell Electrophoresis, pp. 4–21. J&A. Churchill Ltd., London (1965)Google Scholar
  17. 17.
    Friedl, P.: Prespecification and plasticity; shifting mechanisms of cell migration. Curr. Opin. Cell Biol. 16, 14–23 (2004)CrossRefGoogle Scholar
  18. 18.
    Möhl, C.: Modellierung von Adhäsions- und Cytoskelett-Dynamik in Lamellipodien migratorischer Zellen. Diploma thesis. University Bonn (2005)Google Scholar
  19. 19.
    Verkhovsky, A.B., Svitkina, T.M., Borisy, G.G.: Self-polarization and directional motility of cytoplasm. Curr. Biol. 9, 11–20 (1999)CrossRefGoogle Scholar
  20. 20.
    Wolgemuth, C.W., Stajic, J., Mogilner, A.: Redundant mechanisms for stable cell locomotion revealed by minimal models. Biophys. J. 101, 545–553 (2011)CrossRefGoogle Scholar
  21. 21.
    Jilkine, A., Edelstein-Keshet, L.: A comparison of mathematical models for polarization of single eukariotic cells in response to guided cues. PLoS Comput. Biol. 7(4) (2011)Google Scholar
  22. 22.
    Alt, W., Bock, M., Möhl, C.: Coupling of cytoplasm and adhesion dynamics determines cell polarization and locomotion. In: Chauviere, A., Preziosi, L., Verdier, C. (eds.) Cell Mechanics: From Single Cell-Based Models to Multiscale Modeling, pp. 89–131. Taylor & Francis (2010)Google Scholar
  23. 23.
    Bereiter-Hahn, J., Lüers, H.: Subcellular tension fields and mechanical resistance of the lamella front related to the direction of locomotion. Cell Biochem. Biophys. 29, 243–262 (1998)CrossRefGoogle Scholar
  24. 24.
    Bandura, J.: Simulation eines mechanischen Roboter-Modells zur Zellmigration. Diploma thesis. University Bonn (2008)Google Scholar
  25. 25.
    Alt, W., Tranquillo, R.T.: Protrusion-retraction dynamics of an annular lamellipodial seam. In: Alt, W., Dunn, G., Deutsch, A. (eds.) Dynamics of Cell and Tissue Motion, pp. 73–81. Birkhäuser, Basel (1997)CrossRefGoogle Scholar
  26. 26.
    Schneid, B.: Simulation der Migration von Keratinozyten mit Fokus auf die Zytoplasma-Dynamik. Bachelor thesis. University Bonn (to appear, 2012)Google Scholar
  27. 27.
    Østergaard, E.H., Christensen, D.J., Eggenberger, P., Taylor, T., Ottery, P., Hautop Lund, H.: HYDRA: From Cellular Biology to Shape-Changing Artefacts. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 275–281. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Murata, S., Kurokawa, H.: Self-Reconfigurable Robots. IEEE Robotics & Automation Magazine, 71–78 (March 2007)Google Scholar
  29. 29.
    Ishiguro, A., Umedachi, T., Kitamura, T., Nakagaki, T., Kobayashi, R.: A Fully Decentralized Morphology Control of an Amoeboid Robot by Exploiting the Law of Conservation of Protoplasmic Mass. Distributed Autonomous Robotic Systems 8, 193–202 (2009)Google Scholar
  30. 30.
    Umedachi, T., Takeda, K., Nakagaki, T., Kobayashi, R., Ishiguro, A.: Fully decentralized control of a soft-bodied robot inspired by true slime mold. Biol. Cybern. 102, 261–269 (2010)CrossRefGoogle Scholar
  31. 31.
    Hong, D.W., Ingram, M., Lahr, D.: Whole Skin Locomotion Inspired by Amoeboid Motility Mechanisms. ASME J. of Mechanisms and Robotics 1/011015, 1–7 (2009)Google Scholar
  32. 32.
    Steltz, E., Mozeika, A., Rodenberg, N., Brown, E., Jaeger, H.M.: JSEL - Jamming Skin Enabled Locomotion. In: Proc. of the IEEE/RSJ Int. Conf. on Int. Robots and Systems, St. Louis, pp. 5672–5677 (2009)Google Scholar
  33. 33.
    Hou, J., Luo, M., Mei, T.: The design and control of amoeba-like robot. In: Proc. of the IEEE Int. Conf. on Computer Application and System Modeling (ICCASM 2010), Taiyuan, pp. V188–V191 (2010)Google Scholar
  34. 34.
    Tortora, G., Caccavaro, S., Valdastri, P., Menciassi, A., Dario, P.: Design of an autonomous swimming miniature robot based on a novel concept of magnetic actuation. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, Anchorage, pp. 1592–1597 (2010)Google Scholar
  35. 35.
    Kim, S.H., Hashi, S., Ishiyama, K.: Methodology of Dynamic Actuation for Flexible Magnetic Actuator and Biomimetic Robotics Application. IEEE Transactions on Magnetics 46, 1366–1369 (2010)CrossRefGoogle Scholar
  36. 36.
    Zhou, G.Y., Jiang, Z.Y.: Deformation in magnetorheological elastomer and elastomer–ferromagnet composite driven by a magnetic field. J. Smart Mater. Struct. 13, 309–316 (2004)CrossRefGoogle Scholar
  37. 37.
    Varga, Z., Filipcsei, G., Zrinyi, M.: Magnetic field sensitive functional elastomers with tuneable elastic modulus. Polymer 47, 227–233 (2006)CrossRefGoogle Scholar
  38. 38.
    Zimmermann, K., Böhm, V., Zeidis, I.: Vibration-driven mobile robots based on magneto-sensitive elastomers. In: Proc. of the IEEE/ASME Int. Conf. on Intelligent Advanced Mechatronics, Budapest, pp. 730–735 (2011)Google Scholar
  39. 39.
    Liu, A., Nagel, S.: Jamming is not just cool any more. Nature 396, 21 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2012

Authors and Affiliations

  • Wolfgang Alt
    • 2
    Email author
  • Valter Böhm
    • 1
  • Tobias Kaufhold
    • 1
  • Elka Lobutova
    • 1
  • Christian Resagk
    • 1
  • Danja Voges
    • 1
  • Klaus Zimmermann
    • 1
  1. 1.Faculty of Mechanical EngineeringIlmenau University of TechnologyIlmenauGermany
  2. 2.Theoretical Biology, IZMBUniversity of BonnBonnGermany

Personalised recommendations