Advertisement

Work Stealing Strategies for Parallel Stream Processing in Soft Real-Time Systems

  • Sebastian Mattheis
  • Tobias Schuele
  • Andreas Raabe
  • Thomas Henties
  • Urs Gleim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7179)

Abstract

Work stealing has proven to be an efficient technique for scheduling parallel computations. In its basic form, however, work stealing is not suitable for real-time applications, since the latency of a task is hardly predictable. In this paper, we propose a number of variants and extensions of work stealing suitable for stream processing applications. Such applications are frequently encountered in embedded systems, which often have to obey real-time constraints. Moreover, we give bounds on the maximum latency for certain stealing strategies. Our experimental results show a significant reduction of the latency using these strategies.

Keywords

Service Time Stream Processing Work Thread Stream Element Aperiodic Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acar, U., Blelloch, G., Blumofe, R.: The data locality of work stealing. In: Theory of Computing Systems, Springer, Heidelberg (2002)Google Scholar
  2. 2.
    Aldinucci, M., Torquati, M., Meneghin, M.: FastFlow: Efficient parallel streaming applications on multi-core. Tech. Rep. TR-09-12, Università di Pisa, Dipartimento di Informatica, Italy (Septrember 2009)Google Scholar
  3. 3.
    Anselmi, J., Gaujal, B.: Performance evaluation of work stealing for streaming applications. In: Abdelzher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 18–32. Springer, Heidelberg (2009)Google Scholar
  4. 4.
    Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multiprogrammed multiprocessors. In: Symposium on Parallel Algorithms and Architectures (SPAA). ACM (1998)Google Scholar
  5. 5.
    Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.: Cilk: An efficient multithreaded runtime system. In: Symposium on Principles and Practice of Parallel Programming (PPoPP). ACM (1995)Google Scholar
  6. 6.
    Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing. In: Annual Symposium on Foundations of Computer Science (FOCS), pp. 356–368. IEEE (1994)Google Scholar
  7. 7.
    Blumofe, R.D., Papadopoulos, D.: The performance of work stealing in multiprogrammed environments (extended abstract). SIGMETRICS Performance Evaluation Review 26, 266–267 (1998)CrossRefGoogle Scholar
  8. 8.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press (2009)Google Scholar
  9. 9.
    Davis, R., Burns, A.: A survey of hard real-time scheduling algorithms and schedulability analysis techniques for multiprocessor systems. Tech. Rep. YCS-2009-443, University of York, Department of Computer Science (2009)Google Scholar
  10. 10.
    Dinan, J., Larkins, D.B., Sadayappan, P., Krishnamoorthy, S., Niepolcha, J.: Scalable work stealing. In: Interntional Conference on Supercomputing (SC). ACM (2009)Google Scholar
  11. 11.
    Kahn, G.: The semantics of a simple language for parallel programming. In: Information Processing. North Holland (1974)Google Scholar
  12. 12.
    Kwok, Y.-K., Ahmad, I.: Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM Computing Surveys 31, 406–471 (1999)CrossRefGoogle Scholar
  13. 13.
    Lee, E.A., Parks, T.M.: Dataflow process networks. Proceedings of the IEEE 83(5), 773–801 (1995)CrossRefGoogle Scholar
  14. 14.
    Lee, W.Y., Hong, S.J., Kim, J.: On-line scheduling of scalable real-time tasks on multiprocessor systems. Journal of Parallel and Distributed Computing 63(12), 1315–1324 (2003)CrossRefzbMATHGoogle Scholar
  15. 15.
    Manimaran, G., Murthy, C.S.R.: An efficient dynamic scheduling algorithm for multiprocessor real-time systems. Transactions on Parallel and Distributed Systems 9(3), 312–319 (1998)CrossRefGoogle Scholar
  16. 16.
    Mattson, T.G., Sanders, B.A., Massingill, B.L.: Patterns for Parallel Programming. Addison Wesley (2005)Google Scholar
  17. 17.
    Navarro, A., Asenjo, R., Tabik, S., Cascaval, C.: Analytical modeling of pipeline parallelism. In: International Conference on Parallel Architectures and Compilation Techniques (PACT). IEEE (2009)Google Scholar
  18. 18.
    Neill, D., Wierman, A.: On the benefits of work stealing in shared-memory multiprocessors. Tech. rep., Department of Computer Science, Carnegie Mellon University (2010)Google Scholar
  19. 19.
    Otto, F., Pankratius, V., Tichy, W.F.: XJava: Exploiting Parallelism with Object-Oriented Stream Programming. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 875–886. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Qin, X., Jiang, H.: Dynamic, reliability-driven scheduling of parallel real-time jobs in heterogeneous systems. In: International Conference on Parallel Processing (ICPP). IEEE (2001)Google Scholar
  21. 21.
    Schuele, T.: A coordination language for programming embedded multi-core systems. In: International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT). IEEE (2009)Google Scholar
  22. 22.
    Sinnen, O.: Task Scheduling for Parallel Systems. Wiley (2007)Google Scholar
  23. 23.
    Sriram, S., Bhattacharyya, S.S.: Embedded Multiprocessors: Scheduling and Synchronization, 2nd edn. CRC Press (2009)Google Scholar
  24. 24.
    Stephens, R.: A survey of stream processing. Acta Informatica 34(7), 491–541 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: A Language for Streaming Applications. In: CC 2002. LNCS, vol. 2304, pp. 179–196. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sebastian Mattheis
    • 1
  • Tobias Schuele
    • 2
  • Andreas Raabe
    • 3
  • Thomas Henties
    • 2
  • Urs Gleim
    • 2
  1. 1.Fakultät für InformatikTechnische Universität MünchenGarchingGermany
  2. 2.Corporate TechnologySiemens AGMünchenGermany
  3. 3.fortiss GmbHMünchenGermany

Personalised recommendations