Advertisement

Introduction

  • Marcelo J. S. de Lemos
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Impinging jets are often used in industrial applications for enhancing or damping localized heat transfer rates. When the flow is turbulent, thin boundary layers are located inside the stagnation zone, promoting even further cooling, heating or drying processes. Applications of such systems include metals cooling, glass tempering, electronics cooling, drying of textiles products and paper, to mention a few. In this book, two flow configurations are investigated, namely axisymmetric confined arrangements and two-dimensional planar jets. A fluid jet enters a cylindrical chamber through an aperture in an upper disk. An annular clearance between the cylinder lateral wall and the disc allows fluid to flow out of the enclosure.

Keywords

Porous Layer Local Thermal Equilibrium Thin Boundary Layer Glass Tempering Turbulence Kinetic Energy Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Gardon, J.C. Akfirat, Heat transfer characteristics of impinging two-dimensional air jets. J. Heat Transf. 101, 101–108 (1966)CrossRefGoogle Scholar
  2. 2.
    E.M. Sparrow, T.C. Wong, Impinging transfer coefficients due to initially laminar slot jets. Int. J. Heat Mass. Transf. 18, 597–605 (1975)CrossRefGoogle Scholar
  3. 3.
    M. Chen, R. Chalupa, A.C. West, V. Modi, High schmidt mass transfer in a laminar impinging slot jet. Int. J. Heat Mass. Transf. 43, 3907–3915 (2000)zbMATHCrossRefGoogle Scholar
  4. 4.
    V.A. Chiriac, A. Ortega, A numerical study of the unsteady flow and heat transfer in a transitional confined slot jet impinging on an isothermal surface. Int. J. Heat Mass. Transf. 45, 1237–1248 (2002)zbMATHCrossRefGoogle Scholar
  5. 5.
    T. Dermircan, H. Turkoglu, The numerical analysis of oscillating impinging jets. Numer. Heat Transf. Part A Appl. 58(2), 146–161 (2010)CrossRefGoogle Scholar
  6. 6.
    N. Uddin, S.O. Neumann, B. Weigand, B.A. Younis, Large-eddy simulations and heat-flux modeling in a turbulent impinging jet. Numer. Heat Transf. Part A Appl. 55(10), 906–930 (2009)CrossRefGoogle Scholar
  7. 7.
    M.K. Isman, E. Pulat, A.B. Etemoglu, M. Can, Numerical investigation of turbulent impinging jet cooling of a constant heat flux surface. Numer. Heat Transf. Part A Appl. 53(10), 1109–1132 (2008)CrossRefGoogle Scholar
  8. 8.
    Y. Zhang, X.F. Peng, I. Conte, Heat and mass transfer with condensation in non-saturated porous media. Numer. Heat Transf. Part A Appl. 52, 1081–1100 (2007)CrossRefGoogle Scholar
  9. 9.
    M.E. Taskin, A.G. Dixon, E.H. Stitt, CFD study of fluid flow and heat transfer in a fixed bed of cylinders. Numer. Heat Transf. Part A Appl. 52(3), 203–218 (2007)CrossRefGoogle Scholar
  10. 10.
    X.H. Wang, M. Quintard, G. Darche, Adaptive mesh refinement for one-dimensional three-phase flow with phase change in porous media. Numer. Heat Transf. Part A Appl. 50(4), 315–352 (2006)Google Scholar
  11. 11.
    A. Mansour, A. Amahmid, M. Hasnaoui, M. Bourich, Multiplicity of solutions induced by thermosolutal convection in a square porous cavity heated from below and submitted to horizontal concentration gradient in the presence of Soret effect. Numer. Heat Transf. Part A Appl. 49(1), 69–94 (2006)CrossRefGoogle Scholar
  12. 12.
    A.V. Kuznetsov, L. Cheng, M. Xiong, Effects of thermal dispersion and turbulence in forced convection in a composite parallel-plate channel: investigation of constant wall heat flux and constant wall temperature cases. Numer. Heat Transf. Part A Appl. 42(4), 365–383 (2002)CrossRefGoogle Scholar
  13. 13.
    B.M.D. Miranda, N.K. Anand, Convective heat transfer in a channel with porous baffles. Numer. Heat Transf. Part A Appl. 46(5), 425–452 (2004)CrossRefGoogle Scholar
  14. 14.
    N.B. Santos, M.J.S. de Lemos, Flow and heat transfer in a parallel-plate channel with porous and solid baffles. Numer. Heat Transf. Part A Appl. 49(5), 471–494 (2006)CrossRefGoogle Scholar
  15. 15.
    M. Assato, M.H.J. Pedras, M.J.S. de Lemos, Numerical solution of turbulent channel flow past a backward-facing-step with a porous insert using linear and non-linear k-ε models. J. Porous Media 8(1), 13–29 (2005)zbMATHCrossRefGoogle Scholar
  16. 16.
    S.Y. Kim, A.V. Kuznetsov, Optimization of pin-fin heat sinks using anisotropic local thermal nonequilibrium porous model in a jet impinging channel. Numer. Heat Transf. Part A Appl. 44(8), 771–787 (2003)CrossRefGoogle Scholar
  17. 17.
    P. Xiang, A.V. Kunetsov, A.M. Seyam, A porous medium model of the hydroentanglement process. J. Porous Media 11, 35–49 (2008)CrossRefGoogle Scholar
  18. 18.
    P. Xiang, A.V. Kunetsov, Simulation of shape dynamics of a long flexible fiber in a turbulent flow in the hydroentanglement process. Int. Commun. Heat Mass Transf. 35, 529–534 (2008)CrossRefGoogle Scholar
  19. 19.
    M. Prakash, F.O. Turan, Y. Li, J. Manhoney, G.R. Thorpe, Impinging round jet studies in a cylindrical enclosure with and without a porous layer: Part I: Flow visualizations and simulations. Chem. Eng. Sci. 56, 3855–3878 (2001)CrossRefGoogle Scholar
  20. 20.
    M. Prakash, F.O. Turan, Y. Li, J. Manhoney, G.R. Thorpe, Impinging round jet studies in a cylindrical enclosure with and without a porous layer: Part II: DLV measurements and simulations. Chem. Eng. Sci. 56, 3879–3892 (2001)CrossRefGoogle Scholar
  21. 21.
    W.-S. Fu, H.-C. Huang, Thermal performance of different shape porous blocks under an impinging jet. Int. J. Heat Mass Transf. 40(10), 2261–2272 (1997)zbMATHCrossRefGoogle Scholar
  22. 22.
    T.-Z. Jeng, S.-C. Tzeng, Numerical study of confined slot jet impinging on porous metallic foam heat sink. Int. J. Heat Mass Transf. 48, 4685–4694 (2005)zbMATHCrossRefGoogle Scholar
  23. 23.
    D.R. Graminho, M.J.S. de Lemos, Laminar confined impinging jet into a porous layer. Numer. Heat Transf. Part A Appl. 54(2), 151–177 (2008)CrossRefGoogle Scholar
  24. 24.
    D.R. Graminho, M.J.S. de Lemos, Simulation of turbulent impinging jet into a cylindrical chamber with and without a porous layer at the bottom. Int. J. Heat Mass Transf. 52, 680–693 (2009)zbMATHCrossRefGoogle Scholar
  25. 25.
    M.J.S. de Lemos, Turbulence in Porous Media: Modeling and Applications (Elsevier, Amsterdam, 2006)Google Scholar
  26. 26.
    F.D. Rocamora Jr, M.J.S. de Lemos, Analysis of convective heat transfer of turbulent flow in saturated porous media. Int. Commun. Heat Mass Transf. 27(6), 825–834 (2000)CrossRefGoogle Scholar
  27. 27.
    M.J.S. de Lemos, C. Fischer, Thermal analysis of an impinging jet on a plate with and without a porous layer. Numer. Heat Transf. Part A Appl. 54, 1022–1041 (2008)CrossRefGoogle Scholar
  28. 28.
    C. Fischer, M.J.S. de Lemos, A turbulent impinging jet on a plate covered with a porous layer. Numer. Heat Transf. Part A Appl. 58, 429–456 (2010)CrossRefGoogle Scholar
  29. 29.
    M.B. Saito, M.J.S. de Lemos, Interfacial heat transfer coefficient for non-equilibrium convective transport in porous media. Int. Commun. Heat Mass Transf. 32(5), 666–676 (2005)CrossRefGoogle Scholar
  30. 30.
    M.B. Saito, M.J.S. de Lemos, A macroscopic two-energy equation model for turbulent flow and heat transfer in highly porous media. Int. J. Heat Mass Transf. 53(11–12), 2424–2433 (2010)zbMATHCrossRefGoogle Scholar
  31. 31.
    F.T. Dórea, M.J.S. de Lemos, Simulation of laminar impinging jet on a porous medium with a thermal non-equilibrium model. Int. J. Heat Mass Transf. 53, 5089–5101 (2010)zbMATHCrossRefGoogle Scholar
  32. 32.
    M.J.S. de Lemos, F.T. Dórea, Simulation of turbulent impiging jet into a layer of porous material using a two-energy equation model. Numer. Heat Transf. Part A Appl. 59(10), 769–798 (2011)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Marcelo J. S. de Lemos
    • 1
  1. 1.Departamento de Energia—IEMEInstituto Tecnólogico de AeronáuticaSão José dos CamposBrazil

Personalised recommendations