Advertisement

On the Utility of Partially Labeled Data for Classification of Microarray Data

  • Ludwig Lausser
  • Florian Schmid
  • Hans A. Kestler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7081)

Abstract

Microarrays are standard tools for measuring thousands of gene expression levels simultaneously. They are frequently used in the classification process of tumor tissues. In this setting a collected set of samples often consists only of a few dozen data points. Common approaches for classifying such data are supervised. They exclusively use categorized data for training a classification model. Restricted to a small number of samples, these algorithms are affected by overfitting and often lack a good generalization performance. An implicit assumption of supervised methods is that only labeled training samples exist. This assumption does not always hold. In medical studies often additional unlabeled samples are available that can not be categorized for some time (i.e., ”early relapse” vs. ”late relapse”). Alternative classification approaches, such as semi-supervised or transductive algorithms, are able to utilize this partially labeled data. Here, we empirically investigate five semi-supervised and transductive algorithms as ”early prediction tools” for incompletely labeled datasets of high dimensionality and low cardinality. Our experimental setup consists of cross-validation experiments under varying ratios of labeled to unlabeled examples. Most interestingly, the best cross-validation performance is not always achieved for completely labeled data, but rather for partially labeled datasets indicating the strong influence of label information on the classification process, even in the linearly separable case.

Keywords

Unlabeled Sample Label Training Data Class Membership Probability Transductive Support Vector Machine Unlabeled Training 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armstrong, S.A., Staunton, J.E., Silverman, L.B., Pieters, R., den Boer, M.L., Minden, M.D., Sallan, S.E., Lander, E.S., Golub, T.R., Korsmeyer, S.J.: Mll translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genetics 30(1), 41–47 (2002)CrossRefGoogle Scholar
  2. 2.
    Atiya, A.F., Al-Ani, A.: A penalized likelihood based pattern classification algorithm. Pattern Recognition 42, 2684–2694 (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, Secaucus (2006)zbMATHGoogle Scholar
  4. 4.
    Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radmacher, M., Simon, R., Yakhini, Z., Ben-Dor, A., Sampas, N., Dougherty, E., Wang, E., Marincola, F., Gooden, C., Lueders, J., Glatfelter, A., Pollock, P., Carpten, J., Gillanders, E., Leja, D., Dietrich, K., Beaudry, C., Berens, M., Alberts, D., Sondak, V.: Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406(6795), 536–540 (2000)CrossRefGoogle Scholar
  5. 5.
    Blum, A., Chawla, S.: Learning from labeled and unlabeled data using graph mincuts. In: Brodley, C.E., Danyluk, A.P. (eds.) ICML 2001 Proceedings of the Eighteenth International Conference on Machine Learning, pp. 19–26. Morgan Kaufmann, San Francisco (2001)Google Scholar
  6. 6.
    Buchholz, M., Kestler, H.A., Bauer, A., Böck, W., Rau, B., Leder, G., Kratzer, W., Bommer, M., Scarpa, A., Schilling, M.K., Adler, G., Hoheisel, J.D., Gress, T.M.: Specialized DNA arrays for the differentiation of pancreatic tumors. Clinical Cancer Research 11(22), 8048–8054 (2005); HAK and MB contributed equallyCrossRefGoogle Scholar
  7. 7.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2001)zbMATHGoogle Scholar
  8. 8.
    Fix, E., Hodges Jr., J.L.: Discriminatory Analysis: Nonparametric Discrimination: Consistency Properties. Technical Report Project 21-49-004, Report Number 4, USAF School of Aviation Medicine, Randolf Field, Texas (1951)Google Scholar
  9. 9.
    Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning, corrected edn. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  10. 10.
    Joachims, T.: Transductive Inference for Text Classification using Support Vector Machines. In: Bratko, I., Dzeroski, S. (eds.) Proceedings of ICML 1999, 16th International Conference on Machine Learning, pp. 200–209. Morgan Kaufmann Publishers, San Francisco (1999)Google Scholar
  11. 11.
    Nutt, C.L., Mani, D.R., Betensky, R.A., Tamayo, P., Cairncross, J.G., Ladd, C., Pohl, U., Hartmann, C., McLaughlin, M.E., Batchelor, T.T., Black, P.M., von Deimling, A., Pomeroy, S.L., Golub, T.R., Louis, D.N.: Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Research 63(7), 1602–1607 (2003)Google Scholar
  12. 12.
    Platt, J.: Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In: Bartlett, P.J., Schölkopf, B., Schuurmans, D., Smola, A.J. (eds.) Advances in Large Margin Classifiers. MIT Press (2000)Google Scholar
  13. 13.
    Shipp, M.A., Ross, K.N., Tamayo, P., Weng, A.P., Kutok, J.L., Aguiar, R.C.T., Gaasenbeek, M., Angelo, M., Reich, M., Pinkus, G.S., Ray, T.S., Koval, M.A., Last, K.W., Norton, A., Lister, T.A., Mesirov, J., Neuberg, D.S., Lander, E.S., Aster, J.C., Golub, T.R.: Diffuse large b-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine 8(1), 68–74 (2002)CrossRefGoogle Scholar
  14. 14.
    Shu, L., Wu, J., Yu, L., Meng, W.: Kernel-Based Transductive Learning with Nearest Neighbors. In: Li, Q., Feng, L., Pei, J., Wang, S.X., Zhou, X., Zhu, Q.-M. (eds.) APWeb/WAIM 2009. LNCS, vol. 5446, pp. 345–356. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A.A., D’Amico, A.V., Richie, J.P., Lander, E.S., Loda, M., Kantoff, P.W., Golub, T.R., Sellers, W.R.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2), 203–209 (2002)CrossRefGoogle Scholar
  16. 16.
    Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)zbMATHGoogle Scholar
  17. 17.
    West, M., Blanchette, C., Dressman, H., Huang, E., Ishida, S., Spang, R., Zuzan, H., Olson, J.A., Marks, J.R., Nevins, J.R.: Predicting the clinical status of human breast cancer by using gene expression profiles. Proceedings of the National Academy of Science of the United States of America 98(20), 11462–11467 (2001)CrossRefGoogle Scholar
  18. 18.
    Yarowsky, D.: Unsupervised word sense disambiguation rivaling supervised methods. In: Uszkoreit, H. (ed.) ACL 1995 Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics, pp. 189–196. Association for Computational Linguistics, Stroudsburg (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ludwig Lausser
    • 1
  • Florian Schmid
    • 1
  • Hans A. Kestler
    • 1
  1. 1.Research Group Bioinformatics and Systems Biology Institute of Neural Information ProcessingUniversity of UlmGermany

Personalised recommendations