On-Line Change Detection for Resource Allocation in Service-Oriented Systems

  • Jakub M. Tomczak
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 372)

Abstract

In this paper, an on-line change detection algorithm for resource allocation in service-oriented systems is presented. The change detection is made basing on a dissimilarity measure between two estimated probability distributions. In our approach we take advantage of the fact that streams of requests in service-oriented systems can be modeled by non-homogenous Poisson processes. Thus, for Bhattacharyya distance measure and Kullback-Leibler divergence analytical expressions can be given. At the end of the paper a simulation study is presented. The aim of the simulation is to demonstrate an effect of applying adaptive approach in resource allocation problem.

Keywords

change detection Bhattacharyya distance Kullback-Leibler divergence Poisson process 

References

  1. 1.
    Baena-Garcia, M., del Campo-Avila, J., Fidalgo, R., Bifet, A., Gavalda, R., Morales-Bueno, R.: Early drift detection method. In: Proceedings of ECML PKDD 2006 Workshop on Knowledge Discovery from Data Streams, Berlin, Germany (2006)Google Scholar
  2. 2.
    Basseville, M., Nikiforov, I.: Detection of Abrupt Changes: Theory and Application. Prentice-Hall (1993)Google Scholar
  3. 3.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2009)Google Scholar
  4. 4.
    Cha, S.-H.: Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions. Int. J. of Math. Models and Methods in Applied Sciences 1, 4 (2007)Google Scholar
  5. 5.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly Detection: A Survey. ACM Computing Survey 41, 15:1–15:58 (2009)CrossRefGoogle Scholar
  6. 6.
    Crovella, M.E., Bestavros, A.: Self-Similarity in World Wide Web Traffic: Evidence and Possible Causes. IEEE Trans. Netw. 5(6), 835–846 (1997)CrossRefGoogle Scholar
  7. 7.
    D’Alconzo, A., Coluccia, A., Ricciato, F., Romirer-Maierhofer, P.: A Distribution-based Approach to Anomaly Detection and Application to 3G Mobile Traffic. In: IEEE Global Telecommunications Conference, pp. 1–8 (2009)Google Scholar
  8. 8.
    Desobry, F., Davy, M., Doncarli, C.: An Online Kernel Change Detection Algorithm. IEEE Trans. Signal Processing 53(8), 2961–2974 (2005)Google Scholar
  9. 9.
    European Commission: From Grids to Service-Oriented Knowledge Utilities. A critical infrastructure for business and the citizen in the knowledge society (2006), ftp://ftp.cordis.europa.eu/pub/ist/docs/grids/soku-brochureen.pdf
  10. 10.
    Gnedenko, B.V., Kovalenko, I.N.: Introduction to Queueing Theory. Birkhauser, Cambridge (1989)Google Scholar
  11. 11.
    Grzech, A., Rygielski, P., Świątek, P.: Translations of Service Level Agreement in Systems Based on Service-Oriented Architectures. Cybernetics and Systems 41(8), 610–627 (2010)MATHCrossRefGoogle Scholar
  12. 12.
    Gustafsson, F.: Adaptive Filtering and Change Detection. John Wiley & Sons, Chichester (2001)CrossRefGoogle Scholar
  13. 13.
    van der Mei, R.D., Hariharan, R., Reeser, P.K.: Web Server Performance Modelling. Telecommunication Systems 16(3-4), 316–378 (2001)Google Scholar
  14. 14.
    O’Brien, L., Merson, P., Bass, L.: Quality Attributes for Service-Oriented Architecture. In: Proc. of IEEE SDSOA 2007, pp. 3–9 (2007)Google Scholar
  15. 15.
    Paxson, V., Floyd, S.: Wide Area Traffic: The Failure of Poisson. IEEE Trans. Netw. 3, 226–244 (1995)CrossRefGoogle Scholar
  16. 16.
    Rygielski, P., Tomczak, J.M.: Context Change Detection for Resource Allocation in Service-Oriented Systems. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011, Part II. LNCS, vol. 6882, pp. 591–600. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Sebastião, R., Gama, J., Rodrigues, P.P., Bernardes, J.: Monitoring Incremental Histogram Distribution for Change Detection in Data Streams. In: Gaber, M.M., Vatsavai, R.R., Omitaomu, O.A., Gama, J., Chawla, N.V., Ganguly, A.R. (eds.) Sensor-KDD 2008. LNCS, vol. 5840, pp. 25–42. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Vorburger, P., Bernstein, A.: Entropy-based concept shift detection. In: Proc. of the Sixth Int. Conf. on Data Mining, pp. 1113–1118 (2006)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Jakub M. Tomczak
    • 1
  1. 1.Institute of Computer ScienceWrocław University of TechnologyWrocławPoland

Personalised recommendations