Electroforming Process in Metal-Oxide-Polymer Resistive Switching Memories

  • Qian Chen
  • Henrique L. Gomes
  • Asal Kiazadeh
  • Paulo R. F. Rocha
  • Dago M. De Leeuw
  • Stefan C. J. Meskers
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 372)

Abstract

Electroforming of an Al/Al2O3/polymer/Al resistive switching diode is reported. Electroforming is a dielectric soft-breakdown mechanism leading to hysteretic current–voltage characteristics and non–volatile memory behavior. Electron trapping occurs at early stages of electroforming. Trapping is physically located at the oxide/polymer interface. The detrapping kinetics is faster under reverse bias and for thicker oxides layers. Thermally detrapping experiments give a trap depth of 0.65 eV and a density of 5x1017 /cm2. It is proposed that the trapped electrons induce a dipole layer across the oxide. The associated electric field triggers breakdown and ultimately dictate the overall memory characteristics.

Keywords

Resistive Random Access Memory (RRAM) electroforming softbreakdown non-volatile memory 

References

  1. 1.
    Kukreja, L.M., Das, A.K., Misra, P.: Bull. Mater. Sci. 32, 247–252 (2009)CrossRefGoogle Scholar
  2. 2.
    Akinaga, H., Shima, H.: Proceedings of the IEEE 98, 2237–2251 (2010)CrossRefGoogle Scholar
  3. 3.
    Sawa, A.: Materials Today 11, 28–36 (2008)CrossRefGoogle Scholar
  4. 4.
    Robertson, J.: Eur. Phys. J. Appl. Phys. 28, 265–291 (2004)CrossRefGoogle Scholar
  5. 5.
    Specht, M., Reisinger, H., Hofmann, F., Schulz, T., Landgraf, E., Luyken, R.J., Rösner, W., Grieb, M., Risch, L.: Solid-State Electronics 49, 716–720 (2005)CrossRefGoogle Scholar
  6. 6.
    Hickmott, T.W.: J. Appl. Phys. 33, 2669–2682 (1962)CrossRefGoogle Scholar
  7. 7.
    Srivastava, S.K., Bhattacharyya, R.: Thin Solid Films 9, 357–361 (1972)CrossRefGoogle Scholar
  8. 8.
    Bory, B.F., Meskers, S.C.J., Janssen, R.A.J., Gomes, H.L., De Leeuw, D.M.: Appl. Phys. Lett. 97, 222106 (2010)CrossRefGoogle Scholar
  9. 9.
    Shatzkes, M., AvRon, M., Anderson, R.M.: J. Appl. Phys. 45, 2065–2077 (1974)CrossRefGoogle Scholar
  10. 10.
    Hickmott, T.W.: J. Appl. Phys. 88, 2805–2812 (2000)CrossRefGoogle Scholar
  11. 11.
    Liu, D., Robertson, J.: Microelectronic Engineering 86, 1668–1671 (2009)CrossRefGoogle Scholar
  12. 12.
    Heuer, A.H.: J. of the European Ceramic Society 28, 1495–1507 (2008)CrossRefGoogle Scholar
  13. 13.
    Li, Y.T., Long, S.B., Lv, H.B., Liu, Q., Wang, Y., Zhang, S., Lian, W.T., Wang, M., Zhang, K.W., Xie, H.W., Liu, S., Liu, M.: Nanotechnology 22, 254028–254032 (2011)CrossRefGoogle Scholar
  14. 14.
    Andreasson, B.P., Janousch, M., Staub, U., Meijer, G.I., Ramar, A., Krbanjevic, J., Schaeublin, R.: J. of Phys. 190, 012074 (2009)Google Scholar
  15. 15.
    Oxley, D.P.: Electrocomponent Sci. Technol. 3, 217–224 (1977)Google Scholar
  16. 16.
    Mills, C.A., Taylor, D.M., Riul Jr., A., Lee, A.P.: J. Appl. Phys. 91, 5182–5189 (2002)CrossRefGoogle Scholar
  17. 17.
    De Nijs, J.M.M., Balk, P.: Microelectronic Engineering 22, 123–126 (1993)CrossRefGoogle Scholar
  18. 18.
    Hickmott, T.W.: J. Appl. Phys. 88, 2805–2812 (2000)CrossRefGoogle Scholar
  19. 19.
    Cowell, T.A.T., Woods, J.: Br. J. Appl. Phys. 18, 1045–1051 (1967)CrossRefGoogle Scholar
  20. 20.
    Meier, M., Schwoerer, M.: J. Appl. Phys. 84, 87–92 (1998)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Qian Chen
    • 1
  • Henrique L. Gomes
    • 1
  • Asal Kiazadeh
    • 1
  • Paulo R. F. Rocha
    • 1
  • Dago M. De Leeuw
    • 2
  • Stefan C. J. Meskers
    • 3
  1. 1.Center of Electronics Optoelectronics and Telecommunications (CEOT)Universidade do AlgarveFaroPortugal
  2. 2.Philips Research LabsEindhovenThe Netherlands
  3. 3.Molecular Materials and NanosystemsEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations