Raman Imaging pp 243-255 | Cite as

Mapping Chemical and Structural Composition of Pharmaceutical and Biological Samples by Raman, Surface-Enhanced Raman and Fluorescence Spectral Imaging

  • Igor Chourpa
  • Simone Cohen-Jonathan
  • Pierre Dubois
Part of the Springer Series in Optical Sciences book series (SSOS, volume 168)


Raman spectroscopy is an analytical technique recognised for its structural and conformational specificity. The efficient discrimination of molecular species by Raman is particularly potent for multidimensional microscopic imaging of complex biological environment, as demonstrated in the present book. The commonly admitted problem of Raman, low sensitivity, can often be circumvented due to high output instruments and via approaches like RRS (resonance Raman scattering), SERS (surface-enhanced Raman scattering), TERS (tip-enhanced Raman scattering) or CARS (coherent anti-Stokes Raman scattering). In contrast to the latter, RRS and SERS are realizable with less sophisticated set-up based on common Raman systems. Although more invasive than RRS, SERS provides better sensitivity and quenching of fluorescence. SERRS (surface-enhanced resonance Raman scattering) spectroscopy can be used in coupling with fluorescence and competes in selectivity and sensitivity with spectrofluorimetry. In the chapter below, we use recent applications made in our group to illustrate the use of Raman and SERRS spectral imaging for characterization of biological samples (animal subcutaneous tissue, human cancer cells) and pharmaceutical samples (microparticles for drug delivery, fibres for wound dressing). After a brief description of experimental details on spectral imaging, the chapter will focus on results concerning (i) biocompatible pharmaceutical materials made of alginates and (ii) anticancer drugs in pharmaceutical forms and in biological systems.


Spectral Imaging Raman Microspectroscopy Alginate Fibre Resonance Raman Scattering Subdermal Implant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge Région Centre (France), Ligue Nationale Contre le Cancer (France), ARC (France), IFR-135 (Tours, France) and Laboratoire Brothier (Fontevraud l’Abbaye, France) for the financial support.


  1. 1.
    J.R. Beattie et al., Mol. Vis. 11, 825–832 (2005)Google Scholar
  2. 2.
    T. Windhues, W. Borchard, Carbohydr. Polym. 52, 47–52 (2003)Google Scholar
  3. 3.
    M. Rajaaonarivony, C. Vauthier, G. Courraze, F. Puisieux, P. Couvreur, J. Pharm. Sci. 82, 912–917 (1993)CrossRefGoogle Scholar
  4. 4.
    J.B. Speakman, N.H. Chamberlain, J. Soc. Dye. Colour. 60, 264–274 (1944)CrossRefGoogle Scholar
  5. 5.
    K.I. Draget, G. Skjäk-Braek, O. Smidsrød, Carbohydr. Polym. 25, 31–38 (1994)Google Scholar
  6. 6.
    I. Chourpa, P. Carpentier, P. Maingault, P. Dubois, Proc. SPIE 3608, 48–54 (1999)Google Scholar
  7. 7.
    G. Annison, N.W.H. Cheetham, I. Couperwhite, J. Chromatogr. 264, 137–143 (1983)CrossRefGoogle Scholar
  8. 8.
    T. Salomonsen, H.M. Jensen, D. Stenbaek, S.B. Engelsen, Carbohydr. Polym. 72, 730–739, 2008Google Scholar
  9. 9.
    T. Salomonsen, H.M. Jensen, F.H. Larsen, S. Steuernagel, S.B. Engelsen, Carbohydr. Res. 344(15), 2014–2022 (2009)CrossRefGoogle Scholar
  10. 10.
    J.S. Yang, Y.J. Xie, W. He, Carbohydr. Polym. 84, 33–39 (2011)Google Scholar
  11. 11.
    I. Chourpa, P. Carpentier, P. Maingault, F. Fetissoff, P. Dubois, Proc. SPIE 3918, 166–173 (2000)Google Scholar
  12. 12.
    Y. Zhao, F. Li, M.T. Carvajal et al., J. Colloid Interface Sci. 332, 345–353 (2009)CrossRefGoogle Scholar
  13. 13.
    A. Geze, F. Boury, J.P. Benoit, I. Chourpa, P. Dubois, Analyst 124, 37–42 (1999)Google Scholar
  14. 14.
    A.A. Van Apeldoorn, H. Van Manen, J.M. Bezemer, J.D. de Bruijn, C.A. Van Blitterswijk, C. Otto, J. Am. Chem. Soc. 126(41), 13226–13227 (2004)CrossRefGoogle Scholar
  15. 15.
    I. Chourpa, F.H. Lei, P. Dubois, M. Manfait, G.D. Sockalingum, Chem. Soc. Rev. 37, 993–1000 (2008)Google Scholar
  16. 16.
    S. Sharonov, I. Nabiev, I. Chourpa, A. Feofanov, P. Valisa, M. Manfait, J. Raman Spectrosc. 25, 699–707 (1994)Google Scholar
  17. 17.
    E. Lee, F. Adar, A. Whitley,The Application Notebook, Spectroscopy 21 (2006)Google Scholar
  18. 18.
    I. Nabiev, A. Baranov, I. Chourpa, A. Beljebbar, G.D. Sockalingum, M. Manfait, J. Phys. Chem. 99, 1608–1613 (1995)CrossRefGoogle Scholar
  19. 19.
    S. Vibet, K. Mahéo, J. Goré, P. Dubois, P. Bougnoux, I. Chourpa, Drug Metab. Dispos. 35, 822–828 (2007)Google Scholar
  20. 20.
    S.J. Clarke, R.E. Littleford, W.E. Smith R. Goodacre, Analyst, 130, 1019–1026 (2005)Google Scholar
  21. 21.
    A. Shkilnyy, M. Soucé, P. Dubois, F. Warmont, M.L. Saboungi, I. Chourpa, Analyst 134, 1868–1872 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Igor Chourpa
    • 1
  • Simone Cohen-Jonathan
    • 1
  • Pierre Dubois
    • 1
  1. 1.EA 6295, Nanomédicaments et NanosondesUniversité François Rabelais de ToursToursFrance

Personalised recommendations