Raman Mapping for the Investigation of Nano-phased Materials

  • G. Gouadec
  • L. Bellot-Gurlet
  • D. Baron
  • Ph. Colomban
Part of the Springer Series in Optical Sciences book series (SSOS, volume 168)


Nanosized and nanophased materials exhibit special properties. First they offer a good compromise between the high density of chemical bonds by unit volume, needed for good mechanical properties and the homogeneity of amorphous materials that prevents crack initiation. Second, interfaces are in very high concentration and they have a strong influence on many electrical and redox properties. The analysis of nanophased, low crystallinity materials is not straigtforward. The recording of Raman spectra with a geometric resolution close to \(0.5\,\upmu {\text{ m}^3}\) and the deep understanding of the Raman signature allow to locate the different nanophases and to predict the properties of the material. Case studies are discussed: advanced polymer fibres, ceramic fibres and composites, textured piezoelectric ceramics and corroded (ancient) steel.


Lateral Resolution Interfacial Shear Stress Raman Intensity Corrosion Layer Raman Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. Gouadec, Ph Colomban, Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog. Cryst. Growth Charact. Mater. 53, 1–56 (2007)Google Scholar
  2. 2.
    W. Kiefer, (ed.), G. Gouadec, (Guest ed.), Ph. Colomban (Guest ed.), Special issue on the Raman study of nanomaterials. J. Raman Spectr. 38, 597–796 (2007)Google Scholar
  3. 3.
    G. Turrell, Chap 4: Raman Imaging, in Raman Microscopy Developments and Applications, ed. by G. Turrell, J. Corset (Academic Press, London, 1996)Google Scholar
  4. 4.
    Ph. Colomban, Raman analyses and “Smart Imaging" of nanophases and nanosized materials. Spectrosc. Eur. 15, 8–16 (2003)Google Scholar
  5. 5.
    M. Havel, Ph. Colomban, Smart Raman and Rayleigh Spectroscopy for the analysis of nanomaterials. Microsc. Anal. 20, 13–15 (2006)Google Scholar
  6. 6.
    Ph. Colomban, Raman Microspectrometry and Imaging of Ceramic Fibers in CMCs and MMCs, in Advances in Ceramic Matrix Composites V, ed. by N.P. Bansal, J.P. Singh, E. Ustundag (The American Ceramic Society, Westerville, 2000)Google Scholar
  7. 7.
    M. Baranska, L.M. Proniewicz, Raman mapping of caffeine alkaloid. Vibr. Spectr. 48, 153–157 (2008)Google Scholar
  8. 8.
    D.W. Piston, Choosing objective lenses: the importance of numerical aperture and magnification in digital optical microscopy. Biol. Bull. 195, 1–4 (1998)Google Scholar
  9. 9.
    M. Born, E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1985)Google Scholar
  10. 10.
    E. Abbe, Archiv. Mikroscopische Anat. 9, 413 (1873)Google Scholar
  11. 11.
    P.J. Pauzauskie, D. Talaga, K. Seo et al., Polarized Raman confocal microscopy of single gallium nitride nanowires. J. Am. Chem. Soc. 127, 17146–17147 (2005)Google Scholar
  12. 12.
    D.A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977)Google Scholar
  13. 13.
    M. Delhaye, J. Barbillat, J. Aubard et al., Chap 3: Instrumentation, in Raman Microscopy Developments and Applications, ed. by G. Turrell, J. Corset (Academic Press, London, 1996)Google Scholar
  14. 14.
    I. De Wolf, Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond. Sci. Technol. 11, 139–154 (1996)ADSGoogle Scholar
  15. 15.
    G. Turrell, M. Delhaye, P. Dhamelincourt, Chap 2: Characteristics of Raman Microscopy. in Raman Microscopy Developments and Applications. (Academic Press, London, 1996)Google Scholar
  16. 16.
    C.J.R. Sheppard, T. Wilson, Depth of field in the scanning microscope. Optics Lett. 3, 115–117 (1978)ADSGoogle Scholar
  17. 17.
    C.-B. Juang, L. Finzi, C.J. Bustamante, Design and application of a computer-controlled confocal scanning differential polarization microscope. Rev. Sci. Instrum. 59, 2399–2408 (1988)ADSGoogle Scholar
  18. 18.
    V.K. Ramshesh, J.J. Lemasters, Pinhole shifting lifetime imaging microscopy. J. Biomed. Opt. 13, 064001 (2008)ADSGoogle Scholar
  19. 19.
    K. Kneipp, M. Moskovits, H. Kneipp, Surface-Enhanced Raman Scattering. (Springer, Berlin, 2006)Google Scholar
  20. 20.
    N.P.W. Pieczonka, R.F. Aroca, Single molecule analysis by surface-enhanced Raman scattering. Chem. Soc. Rev. 37, 946–954 (2008)Google Scholar
  21. 21.
    M. Montagna, R. Dusi, Raman scattering from small spherical particles. Phys. Rev. B 52, 10080–10089 (1995)ADSGoogle Scholar
  22. 22.
    A. Roy, A.K. Sood, Growth of CdS\(_{x}\)Se\(_{1-x}\) nanoparticles in glass matrix by isochronal thermal annealing: confined acoustic phonons and optical absorptions studies. Solid State Comm. 97, 97–102 (1996)ADSGoogle Scholar
  23. 23.
    M. Ferrari, F. Gonella, M. Montagna et al., Detection and size determination of Ag nanoclusters in ion-exchanged soda-lime glasses by waveguided Raman spectroscopy. J. Appl. Phys. 79, 2055–2059 (1996)ADSGoogle Scholar
  24. 24.
    V. Paillard, P. Puech, M.A. Laguna et al., Improved one-phonon confinement model for an accurate size determination of silicon nanocrystals. J. Appl. Phys. 86, 1921–1924 (1999)ADSGoogle Scholar
  25. 25.
    W.K. Choi, Y.W. Ho, V. Ng, Effect of size of Ge nanocrystals embedded in SiO\(_{2}\) on Raman spectra. Mater. Phys. Mech. 4, 46–50 (2001)ADSGoogle Scholar
  26. 26.
    M. Ivanda, K. Babocsi, C. Dem et al., Low wavenumber Raman scattering from CdS\(_{x}\)Se\(_{1-x}\) quantum dots embedded in a glass matrix. Phys. Rev. B 67, 235329 (2003)ADSGoogle Scholar
  27. 27.
    K.W. Adu, Q. Xiong, H.R. Gutierrez et al., Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires. Appl. Phys. A85, 287 (2006)ADSGoogle Scholar
  28. 28.
    M. Ivanda, A. Hohl, M. Montagna et al., Raman scattering of acoustical modes of silicon nanoparticles embedded in silica matrix. J. Raman Spectrosc. 37, 161 (2006)Google Scholar
  29. 29.
    M. Ivanda, K. Furic, S. Music et al., Low wavenumber Raman scattering of nanoparticle and nanocomposite materials. J. Raman Spectr. 38, 647–659 (2007)Google Scholar
  30. 30.
    C. Pinghini, D. Aymes, N. Millot et al., Low-frequency Raman characterization of size-controlled anatase TiO\(_{2}\) nanopowders prepared by continuous hydrothermal syntheses. J. Nanopart. Res. 9, 309–315 (2007)Google Scholar
  31. 31.
    S.K. Ram, M.N. Islam, S. Kumar et al., Evidence of bimodal crystallite size distribution in \(\mu \)c-Si:H films. Mater. Sci. Eng. A 159–160, 34–37 (2009)Google Scholar
  32. 32.
    S.K. Gupta, R. Desai, P.K. Jha et al., Titanium dioxide synthesized using Titanium chloride: size effect study using Raman spectroscopy and photoluminescence. J. Raman Spectr. 41, 350–355 (2010)Google Scholar
  33. 33.
    D. Richards, Near-field microscopy: throwing light on the nanoworld. Phil. Trans. R. Soc. Lond. A 361, 2843–2857 (2003)ADSGoogle Scholar
  34. 34.
    E. Bailo, V. Deckert, Tip-enhanced Raman scattering. Chem. Soc. Rev. 37, 921–930 (2008)Google Scholar
  35. 35.
    B.-S. Yeo, J. Stadler, T. Schmid et al., Tip-enhanced Raman spectroscopy—Its status, challenges and future directions. Chem. Phys. Lett. 472, 1–13 (2009)ADSGoogle Scholar
  36. 36.
    N.J. Everall, Confocal Raman microscopy: why the depth resolution and spatial accuracy can be much worse than you think. Appl. Spectr. 54, 1515–1520 (2000)ADSGoogle Scholar
  37. 37.
    J.P. Tomba, J.M. Pastor, Confocal Raman microspectroscopy with dry objectives: a depth profiling study on polymer films. Vibr. Spectr. 44, 62–68 (2007)Google Scholar
  38. 38.
    T. Jawhari, J.C. Merino, J.M. Pastor, Micro-Raman spectroscopy study of the process of microindentation in polymers. J. Mater. Sci. 27, 2231–2242 (1992)ADSGoogle Scholar
  39. 39.
    S. Schuckler, S.W. Huffman, I.W. Levin, Vibrational microspectroscopic imaging: spatial resolution enhancement. Proc. SPIE 5321, 157 (2004)ADSGoogle Scholar
  40. 40.
    J. Kasim, Y. Ting, Y.Y. Meng et al., Near-field Raman imaging using optically trapped dielectric microsphere. Opt. Express 16, 7976 (2008)ADSGoogle Scholar
  41. 41.
    A. Atkinson, S.C. Jain, Spatially resolved stress analysis using Raman spectroscopy. J. Raman Spectrosc. 30, 885–891 (1999)ADSGoogle Scholar
  42. 42.
    B. Dietrich, K.F. Dombrowski, Experimental challenges of stress measurements with resonant Micro-Raman spectroscopy. J. Raman Spectrosc. 30, 893–897 (1999)ADSGoogle Scholar
  43. 43.
    K. Chikama, K. Matsubara, S. Oyama et al., Three-dimensional confocal Raman imaging of volume holograms formed in ZrO\(_{2}\) nanoparticle-photopolymer composite materials. J. Appl. Phys. 103, 113108 (2008)ADSGoogle Scholar
  44. 44.
    L.-H. He, E.A. Carter, M.V. Swain, Characterization of nanoindentation-induced residual stresses in human enamel by Raman microspectroscopy. Anal. Bioanal. Chem. 389, 1185–1192 (2007)Google Scholar
  45. 45.
    W.B. White, The structure of particles and the structure of crystals: information from vibrational spectroscopy. J. Ceram. Process. Res. 6, 1–9 (2005)Google Scholar
  46. 46.
    Ph Colomban, F. Romain, A. Neiman et al., Double Perovskites with oxygen structural vacancies: Raman spectra, conductivity and water uptake. Solid State Ionics 145, 339–347 (2001)Google Scholar
  47. 47.
    J.E. Spanier, R.D. Robinson, F. Zhang et al., Size-dependent properties of CeO\(_{2-y}\) nanoparticles as studied by Raman scattering. Phys. Rev. B 64, 2450407 (2001)Google Scholar
  48. 48.
    I. Kosacki, T. Suzuki, V. Petrovsky et al., Raman scattering and lattice defects in nanocrystalline CeO\(_{2}\) thin films. Solid State Ionics 149, 99–105 (2002)Google Scholar
  49. 49.
    A.V. Gomonnai, Y.M. Azhniuk, V.O. Yukhymchuk et al., Confinement-, surface- and disorder-related effects in the resonant Raman spectra of nanometric CdS\(_{1-x}\)Se\(_{x}\) crystals. Phys. Status Solidi B 239, 490–499 (2003)ADSGoogle Scholar
  50. 50.
    D. Chiriu, P.C. Ricci, C.M. Carbonaro, Vibrational properties of mixed (Y\(_{3}\)Al\(_{5}\)O\(_{12})_{x }\)- (Y\(_{3}\)Sc\(_{2}\)Ga\(_{3}\)O\(_{12})_{1-x }\)crystals. J. Appl. Phys. 100, 033101–033105 (2006)ADSGoogle Scholar
  51. 51.
    Ph Colomban, A. Tournié, L. Bellot-Gurlet, Raman identification of glassy silicates used in ceramic, glass and jewellry: a tentative differentiation guide. J. Raman Spectrosc. 37, 841–852 (2006)ADSGoogle Scholar
  52. 52.
    I.H. Campbell, P.M. Fauchet, The effects of mycrocrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Comm. 58, 739–741 (1986)ADSGoogle Scholar
  53. 53.
    K.R. Patton, M.R. Geller, Phonons in a nanoparticle mechanically coupled to a substrate. Phys. Rev. B 67(155), 418 (2003)Google Scholar
  54. 54.
    S. Hofmann, C. Ducati, R.J. Neil et al., Gold catalysed growth of silicon nanowires by plasma enhanced chemical vapor deposition. J. Appl. Phys. 94, 6005–6012 (2003)ADSGoogle Scholar
  55. 55.
    Q. Xiong, R. Gupta, K.W. Adu et al., Raman spectroscopy and structure of crystalline gallium phosphide nanowires. J. Nanosci. Nanotech. 3, 335–339 (2003)Google Scholar
  56. 56.
    C. Trallero-Giner, Optical phonons and resonant Raman scattering in II–VI spheroidal quantum dots. Phys. Status Solidi B 241, 572–578 (2004)ADSGoogle Scholar
  57. 57.
    A.K. Arora, M. Rajalakshmi, T.R. Ravindran, Phonon Confinement in Nanostructured Materials, in Encyclopedia of Nanoscience and Nanotechnology, ed. by H.S. Nalwa (American Scientific Publishers, Valencia, 2004)Google Scholar
  58. 58.
    L. Saviot, D.B. Murray, M.D.C. Marco de Lucas, Vibrations of free and embedded anisotropic elastic spheres: application to low-frequency Raman scattering of silicon nanoparticles in silica. Phys. Rev. B 69, 113402 (2004)Google Scholar
  59. 59.
    K.-Y. Lee, J.-R. Lim, H. Rho et al., Evolution of optical phonons in CdS nanowires, nanobelts, and nanosheets. Appl. Phys. Lett. 91, 201901 (2007)ADSGoogle Scholar
  60. 60.
    A.G. Rolo, M.I. Vasilevskiy, Raman spectroscopy of optical phonons confined in semiconductor quantum dots and nanocrystals. J. Raman Spectr. 38, 618–633 (2007)ADSGoogle Scholar
  61. 61.
    Y.-T. Nien, B. Zaman, J. Ouyang et al., Raman scattering for the size of CdSe and CdS nanocrystals and comparison with other techniques. Mater. Lett. 62, 4522–4524 (2008)Google Scholar
  62. 62.
    S. Pojprapai, J.L. Jones, M. Hoffman, Determination of domain orientation in Lead Zirconate Titanate ceramics by Raman spectroscopy. Appl. Phys. Lett. 88, 162903 (2006)ADSGoogle Scholar
  63. 63.
    M. Deluca, T. Sakashita, G. Pezzotti, Polarized Raman scattering of domain structures in polycrystaline Lead Zirconate Titanate. Appl. Phys. Lett. 90, 051919 (2007)ADSGoogle Scholar
  64. 64.
    M. Becker, H. Scheel, S. Christiansen et al., Grain orientation, texture, and internal stress optically evaluated by micro-Raman spectroscopy. J. Appl. Phys. 101, 063531 (2007)ADSGoogle Scholar
  65. 65.
    D.B. Murray, C.H. Netting, R.B. Mercer et al., Polarizability calculation of vibrating nanoparticles for intensity of low wavenumber Raman scattering. J. Raman Spectr. 38, 770–779 (2007)ADSGoogle Scholar
  66. 66.
    H.M. Fan, X.F. Fan, Z.H. Ni et al., Orientation-dependant Raman spectroscopy of single Wurtzite CdS nanowires. J. Phys. Chem. C 112, 1865–1870 (2008)Google Scholar
  67. 67.
    C. Galiotis, Laser Raman spectroscopy, a new stress/strain measurement technique for the remote and online non-destructive inspection of fiber reinforced polymer composites. Mater. Technol. 8, 203–209 (1993)Google Scholar
  68. 68.
    L.S. Schadler, C. Galiotis, Fundamentals and applications of micro Raman spectroscopy to strain measurements in fibre reinforced composites. Inter. Mater. Rev. 40, 116–134 (1995)Google Scholar
  69. 69.
    E. Anastassakis, Selection rules of Raman scattering by optical phonons in strained cubic crystals. J. Appl. Phys. 82, 1582–1591 (1997)ADSGoogle Scholar
  70. 70.
    G. Lucazeau, Effect of pressure and temperature on Raman spectra of solids: anharmonicity. J. Raman Spectrosc. 34, 478–496 (2003)ADSGoogle Scholar
  71. 71.
    D. Bollas, J. Parthenios, C. Galiotis, Effect of stress and temperature on the optical phonons of aramid fibers. Phys. Rev. B 73, 094103 (2006)ADSGoogle Scholar
  72. 72.
    H. Richter, Z.P. Wang, L. Ley, The one phonon Raman spectrum in microcrystalline silicon. Solid State Comm. 39, 625–629 (1981)ADSGoogle Scholar
  73. 73.
    P. Parayanthal, F.H. Pollak, Raman scattering in alloy semiconductors: “spatial correlation” model. Phys. Rev. Lett. 52, 1822–1825 (1984)ADSGoogle Scholar
  74. 74.
    H. Lamb, On the vibrations of an elastic sphere. Proc. London Math. Soc. 13, 189–212 (1882)MathSciNetzbMATHGoogle Scholar
  75. 75.
    A. Tamura, K. Higeta, T. Ichinokawa, Lattice vibrations and specific heat of a small particle. J. Phys. C: Solid State Phys. 15, 4975–4991 (1982)ADSGoogle Scholar
  76. 76.
    E. Duval, Far-Infrared and Raman vibrational transitions of a solid sphere: selection rules. Phys. Rev. B 46, 5795–5797 (1992)ADSGoogle Scholar
  77. 77.
    A. Tanaka, S. Onari, T. Arai, Low-frequency Raman scattering from CdS microcrystals embedded in a Germanium Dioxide glass matrix. Phys. Rev. B 47, 1237–1243 (1993)ADSGoogle Scholar
  78. 78.
    L. Saviot, D.B. Murray, The connection between elastic scattering cross sections and acoustic vibrations of an embedded nanoparticle. Phys. Status Solidi C 1, 2634–2637 (2004)ADSGoogle Scholar
  79. 79.
    E. Duval, A. Boukenter, B. Champagnon, Vibration eigenmodes and size of microcrystallites in glass: observation by very-low-frequency Raman scattering. Phys. Rev. Lett. 56, 2052–2055 (1986)ADSGoogle Scholar
  80. 80.
    P. Verma, W. Cordts, G. Irmer et al., Acoustic vibrations of semiconductor nanocrystals in doped glasses. Phys. Rev. B 60, 5778–5785 (1999)ADSGoogle Scholar
  81. 81.
    M.C. Klein, F. Hache, D. Ricard et al., size dependence of electron–phonon coupling in semiconductor nanospheres: the case of CdSe. Phys. Rev. B 42, 11123–11132 (1990)ADSGoogle Scholar
  82. 82.
    F. Comas, C. Trallero-Giner, N. Studart et al., Interface optical phonons in spheroidal dots: Raman selection rules. Phys. Rev. B 65, 073303 (2002)ADSGoogle Scholar
  83. 83.
    E.P. Pokatilov, S. Klimin, V.M. Fomin et al., Multi-phonon Raman scattering in semiconductor nanocrystals: importance of non-adiabatic transitions. Phys. Rev. B 65, 075316 (2002)ADSGoogle Scholar
  84. 84.
    M.I. Vasilevskiy, Dipolar vibrational modes in spherical semiconductor quantum dots. Phys. Rev. B 66, 195326 (2002)ADSGoogle Scholar
  85. 85.
    V.A. Fonoberov, A.A. Balandin, Polar optical phonons in Wurtzite spheroidal quantum dots: theory and application to ZnO and ZnO/MgZnO nanostructures. J. Phys. Cond. Matter 17, 1085–1097 (2005)ADSGoogle Scholar
  86. 86.
    Q.H. Zhong, Optical phonon modes in a free-standing quantum wire with ring geometry. Phys. Lett. A 372, 5932–5937 (2008)ADSzbMATHGoogle Scholar
  87. 87.
    H. Shinzawa, K. Awa, W. Kanematsu et al., Multivariate data analysis for Raman spectroscopic imaging. J. Raman Spectr. 40, 1720–1725 (2009)ADSGoogle Scholar
  88. 88.
    I. Noda, Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy. Appl. Spectrosc. 47, 1329–1336 (1993)ADSGoogle Scholar
  89. 89.
    Y.M. Jung, I. Noda, New approaches to generalized two-dimensional correlation spectroscopy and its applications. Appl. Spectr. Rev. 41, 515–547 (2006)ADSGoogle Scholar
  90. 90.
    M.A. Czarnecki, Interpretation of two-dimensional correlation spectra: science or art? Appl. Spectrosc. 52, 1583–1590 (1998)ADSGoogle Scholar
  91. 91.
    M.A. Czarnecki, Two-dimensional correlation spectroscopy: effect of normalization of the dynamic spectra. Appl. Spectrosc. 53, 1392–1397 (1999)ADSGoogle Scholar
  92. 92.
    G. Gouadec, J.-P. Forgerit, Ph Colomban, Choice of the working conditions for Raman extensometry of carbon and SiC fibers by 2D correlation. Comp. Sci. Technol. 62, 505–511 (2002)Google Scholar
  93. 93.
    C. Thomsen, S. Reich, Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85, 5214–5217 (2000)ADSGoogle Scholar
  94. 94.
    F. Tuinstra, J.L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970)ADSGoogle Scholar
  95. 95.
    A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000)ADSGoogle Scholar
  96. 96.
    R. Carles, A. Mlayah, M.B. Amjoud et al., Structural characterization of Ge microcrystals in Ge\(_{x}\)C\(_{1-x}\) films. Jap. J. Appl. Phys. 31(pt 1), 3511–3514 (1992)ADSGoogle Scholar
  97. 97.
    Y.K. Kim, H.M. Jang, Raman lineshape analysis of nano-structural evolution in cation—ordered ZrTiO\(_{4}\)—based dielectrics. Solid State Comm. 127, 433–437 (2003)ADSGoogle Scholar
  98. 98.
    A.K. Arora, M. Rajalakshmi, T.R. Ravindran et al., Raman spectroscopy of optical phonon confinement in nanostructured materials. J. Raman Spectr. 38, 604–617 (2007)ADSGoogle Scholar
  99. 99.
    M. Havel, Ph Colomban, Skin/Bulk nanostructure and corrosion of SiC based fibres. A surface Rayleigh and Raman study. J. Raman Spectrosc. 34, 786–794 (2003)ADSGoogle Scholar
  100. 100.
    M. Havel, Ph. Colomban, Rayleigh and Raman images of the bulk/surface nanostructure of SiC based fibres. Compos. Part B. 35, 139–147 (2004)Google Scholar
  101. 101.
    M. Havel, D. Baron, Ph Colomban, Smart Raman/Rayleigh imaging of nanosized SiC materials using the spatial correlation model. J. Mater. Sci. 39, 6183–6190 (2004)ADSGoogle Scholar
  102. 102.
    A. Tanaka, S. Onari, T. Arai, Raman scattering from CdS microcrystals embedded in a Germanate glass matrix. Phys. Rev. B 45, 6587–6592 (1992)ADSGoogle Scholar
  103. 103.
    J. Zuo, C. Xu, Y. Liu et al., Crystallite size effects on the Raman spectra of Mn\(_{3}\)O\(_{4}\). Nanostruct. Mater. 10, 1331–1335 (1998)Google Scholar
  104. 104.
    K.K. Tiong, P.M. Amirtharaj, F.H. Pollak et al., Effects of As\(^{+}\) ion implantation on the Raman spectra of GaAs: “Spatial Correlation” interpretation. Appl. Phys. Lett. 44, 122–124 (1984)ADSGoogle Scholar
  105. 105.
    J. Zuo, C. Xu, B. Hou et al., Raman spectra of nanophase Cr\(_{2}\)O\(_{3}\). J. Raman Spectrosc. 27, 921–923 (1996)ADSGoogle Scholar
  106. 106.
    A. Fischer, L. Anthony, A.D. Compaan, Raman analysis of short-range clustering in Laser—Deposited CdS\(_{x}\)Te\(_{1-x}\) Films. Appl. Phys. Lett. 72, 2559–2561 (1998)ADSGoogle Scholar
  107. 107.
    W.F. Zhang, Y.L. He, M.S. Zhang et al., Raman scattering study on anatase TiO\(_{2}\) nanocrystals. J. Phys. D 33, 912–916 (2000)ADSGoogle Scholar
  108. 108.
    Y.K. Kim, H.M. Jang, Polarization leakage and asymmetric Raman line broadening in microwave dielectric ZrTiO\(_{4}\). J. Phys. Chem. Solids 64, 1271–1278 (2003)ADSGoogle Scholar
  109. 109.
    H.M. Jang, T.-Y. Kim, I.-W. Park, Nano-sized clusters with tetragonal symmetry in PbTiO\(_{3}\)—based relaxor ferroelectrics. Sol. State Comm. 127, 645–648 (2003)ADSGoogle Scholar
  110. 110.
    R.S. Chen, C.C. Chen, Y.S. Huang et al., A comparative study of microstructure of RuO\(_{2}\) nanorods via Raman scattering and field emission scanning electron microscopy. Sol. State Comm. 131, 349–353 (2004)ADSGoogle Scholar
  111. 111.
    X.J. Ning, P. Pirouz, The microstructure of SCS-6 SiC fibre. J. Mater. Res. 6, 2234–2248 (1991)ADSGoogle Scholar
  112. 112.
    A.B. Mann, M. Balooch, J.H. Kinney et al., Radial variations in modulus and hardness in SCS-6 silicon carbide fibers. J. Am. Ceram. Soc. 82, 111–116 (1999)Google Scholar
  113. 113.
    M. Havel, D. Baron, L. Mazerolles et al., Phonon confinement in SiC nanocrystals: comparison of the size determination using transmission electron microscopy and Raman spectroscopy. Appl. Spectrosc. 61, 855–859 (2007)ADSGoogle Scholar
  114. 114.
    S. Ganesan, A.A. Maradudin, J. Oitmaa, A lattice theory of morphic effects in crystals of the diamond structure. Ann. Phys. 56, 556–594 (1970)ADSGoogle Scholar
  115. 115.
    E. Anastassakis, A. Pinczuk, E. Burnstein et al., Effect of static uniaxial stress on the Raman spectrum of silicon. Solid State Comm. 8, 133–138 (1970)ADSGoogle Scholar
  116. 116.
    E. Anastassakis, Inelastic light scattering in the presence of uniaxial stress. J. Raman Spectr. 10, 64–76 (1981)ADSGoogle Scholar
  117. 117.
    I. De Wolf, H.E. Maes, S.K. Jones, Stress measurements in silicon devices through Raman spectroscopy: bridging the gap between theory and experiment. J. Appl. Phys. 79, 7148–7156 (1996)ADSGoogle Scholar
  118. 118.
    I. De Wolf, Stress measurements in Si microelectronics devices using Raman spectroscopy. J. Raman Spectrosc. 30, 877–883 (1999)ADSGoogle Scholar
  119. 119.
    I. De Wolf, Raman spectroscopy: about chips and stress. Spectroscopy Europe 15, 6–13 (2002)Google Scholar
  120. 120.
    J. Wu, Ph Colomban, Raman spectroscopy study on the stress distribution in the continuous Fibre-reinforced CMC. J. Raman Spectrosc. 28, 523–529 (1997)ADSGoogle Scholar
  121. 121.
    G. Gouadec, S. Karlin, Ph. Colomban, Raman Extensometry Study of NLM202 and Hi-Nicalon SiC Fibres. Compos. Part B 29, 251–261 (1998)Google Scholar
  122. 122.
    B. Mottershead, S.J. Eichhorn, Deformation micromechanics of model regenerated cellulose fibre-epoxy/polyester composites. Comp. Sci.& Tech. 67, 2150–2159 (2007)Google Scholar
  123. 123.
    W.T.Y. Tze, S.C. O’Neill, C.P. Tripp et al., Evaluation of load transfer in the cellulosic–fiber/polymer interphase using a micro-Raman tensile test. Wood and Fiber Sci. 39, 184–195 (2007)Google Scholar
  124. 124.
    L. Zhenkun, Q. Wei, K. Yilan et al., Stress transfer of single fiber/microdroplet tensile test studied by micro-Raman spectroscopy. Compos. Part A 39, 113–118 (2008)Google Scholar
  125. 125.
    C. Galiotis, A. Paipetis, C. Marston, Unification of fibre/matrix interfacial measurements with Raman microscopy. J. Raman Spectrosc. 30, 899–912 (1999)ADSGoogle Scholar
  126. 126.
    A. Paipetis, C. Galiotis, Y.C. Liu et al., Stress-transfer from the matrix to the fibre in a fragmentation test: Raman experiments and analytical modeling. J. Comp. Mater. 33, 377–399 (1999)Google Scholar
  127. 127.
    E. Pisanova, S. Zhandarov, E. Mäder et al., Three techniques of interfacial bond strength estimation from direct observation of crack initiation and propagation in polymer–fibre systems. Compos. Part A 32, 435–443 (2001)Google Scholar
  128. 128.
    R.J. Young, C. Thongpin, J.L Stanford et al., Fragmentation analysis of glass fibres in model composites through the use of Raman spectroscopy. Compos. Part A 32, 253–269 (2001)Google Scholar
  129. 129.
    P.I. Gonzalez-Chi, R.J. Young, Deformation micromechanics of a thermoplastic–thermoset interphase of epoxy composites reinforced with polyethylene fiber. J. Mater. Sci. 39, 7049–7059 (2004)ADSGoogle Scholar
  130. 130.
    G. Anagnostopoulos, A.G. Andreopoulos, J. Parthenios et al., Global method for measuring stress in polymer fibers at elevated temperatures. Appl. Phys. Lett. 87, 131910 (2005)ADSGoogle Scholar
  131. 131.
    G. Anagnostopoulos, J. Parthenios, A.G. Andreopoulos et al., An experimental and theoretical study of the stress transfer problem in fibrous composites. Acta Mater. 53, 4173–4183 (2005)Google Scholar
  132. 132.
    A.B. Coffey, C.M. O’Bradaigh, R.J. Young, Interfacial stress transfer in an aramid reinforced thermoplastic elastomer. J. Mater. Sci. 42, 8053–8061 (2006)ADSGoogle Scholar
  133. 133.
    R. Kumar, S.B. Cronin, Optical properties of carbon nanotubes under axial strain. J. Nanosci. Nanotech. 8, 1–9 (2007)Google Scholar
  134. 134.
    J.R. Wood, Q. Zhao, M.D. Frogley et al., Carbon nanotubes: from molecular to macroscopic sensors. Phys. Rev. B 62, 7571–7575 (2000)ADSGoogle Scholar
  135. 135.
    Q. Zhao, M.D. Frogley, H.D. Wagner, The use of carbon nanotubes to sense matrix stress around a single glass fiber. Comp. Sci. Technol. 61, 2139–2143 (2001)Google Scholar
  136. 136.
    Q. Zhao, M.D. Frogley, H.D. Wagner, Direction-sensitive stress measurements with carbon nanotubes sensors. Polym. Adv. Techn. 13, 759–764 (2002)Google Scholar
  137. 137.
    C.A. Cooper, R.J. Young, M. Halsall, Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Compos. Part A 32, 401–411 (2001)Google Scholar
  138. 138.
    M.S. Dresselhaus, G. Dresselhaus, R. Saito et al., Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005)ADSGoogle Scholar
  139. 139.
    C. Thomsen, S. Reich, Chap 3: Raman Scattering in Carbon Nanotubes. in Light Scattering in Solids IX: Novel Materials and Techniques, ed. by M. Cardona, R. Merlin (Springer, Heidelberg, 2006)Google Scholar
  140. 140.
    V. Domnich, Y. Aratyn, W.M. Kriven et al., Temperature Dependance of silicon hardness: experimental evidence of phase transformations. Rev. Adv. Mater. Sci 17, 33–41 (2008)Google Scholar
  141. 141.
    C.R. Das, H.C. Hsu, S. Dhara et al., A complete Raman mapping of phase transitions in Si under indentation. J. Raman Spectr. 41, 334–339 (2010)Google Scholar
  142. 142.
    S. Kouteva-Arguirova, V. Orlov, W. Seifert et al., Raman investigation of stress and phase transformation induced in silicon by indentation at high temperatures. Eur. Phys. J. Appl. Phys. 27, 279–283 (2004)ADSGoogle Scholar
  143. 143.
    P. Puech, F. Demangeot, J. Frandon et al., GaN nanoindentation: a micro-Raman spectroscopy study of local strain fields. J. Appl. Phys. 96, 2853–2856 (2004)ADSGoogle Scholar
  144. 144.
    N. Orlovskaya, D. Steinmetz, S. Yarmolenko et al., Detection of temperature- and stress-induced modifications of LaCoO\(_{3}\) by micro-Raman spectroscopy. Phys. Rev. B 72, 014122 (2005)ADSGoogle Scholar
  145. 145.
    T. Wermelinger, C. Borgia, C. Solenthaler et al., 3-D Raman spectroscopy measurements of the symmetry of residual stress fields in plastically deformed sapphire crystals. Acta Mater. 55, 4657–4665 (2007)Google Scholar
  146. 146.
    C.R. Das, S. Dhara, H.C. Hsu et al., The mechanism of the recrystallization process in epitaxial GaN under dynamic stress field: atomistic origin of planar defect formation. J. Raman Spectr. 40, 1881–1884 (2009)ADSGoogle Scholar
  147. 147.
    Y.B. Gerbig, S.J. Stranick, D.J. Morris et al., Effect of crystallographic orientation on phase transformations during indentation of silicon. J. Mater. Res. 24, 1172–1183 (2009)ADSGoogle Scholar
  148. 148.
    T. Wermelinger, R. Spolenak, Correlating Raman peak shifts with phase transformation and defect densities: a comprehensive TEM and Raman study on silicon. J. Raman Spectr. 40, 679–686 (2009)ADSGoogle Scholar
  149. 149.
    Ph Colomban, M. Havel, Raman imaging of stress-induced phase transformation in transparent ZnSe ceramics and Sapphire single crystal. J. Raman Spectrosc. 33, 789–795 (2002)ADSGoogle Scholar
  150. 150.
    D. Neff, S SR, L. Bellot-Gurlet et al., Structural characterization of corrosion products on archaeological iron: an integrated analytical approach to establish corrosion forms. J. Raman Spectrosc. 35, 739–745 (2004)Google Scholar
  151. 151.
    S. Réguer, D. Neff, L. Bellot-Gurlet et al., Deterioration of iron archaeological artefacts: micro-Raman investigation on Cl-containing corrosion products. J. Raman Spectrosc. 38, 389–397 (2007)ADSGoogle Scholar
  152. 152.
    L. Bellot-Gurlet, D. Neff, S. Réguer et al., Raman studies of corrosion layers formed on archaeological irons in various media. J. Nano Res. 8, 147–156 (2009)Google Scholar
  153. 153.
    Ph Colomban, S. Cherifi, G. Dexpert, Raman identification of corrosion products on automotive galvanized steel sheets. J. Raman Spectr. 39, 881–886 (2008)ADSGoogle Scholar
  154. 154.
    P. Dillmann, G. Béranger, P. Piccardo et al. (eds). Corrosion of Metallic Heritage Artefacts. Investigation, Conservation and Prediction for Long-Term Behaviour, European federation of corrosion publications-EFC, vol. 48 (Woodhead, Cambridge, 2007)Google Scholar
  155. 155.
    D. Neff, L. Bellot-Gurlet, P. Dillmann et al., Raman imaging of ancient rust scales on archaeological iron artefacts for long-term atmospheric corrosion mechanisms study. J. Raman Spectrosc. 37, 1228–1237 (2006)ADSGoogle Scholar
  156. 156.
    H. Antony, S. Perrin, P. Dillmann et al., Electrochemical study of indoor atmospheric corrosion layers formed on ancient iron artefacts. Electrochimica Acta 52, 7754–7759 (2007)Google Scholar
  157. 157.
    Monnier J (2008) Corrosion Atmosphérique sous Abri d’Alliages Ferreux Historiques. Caractérisation du Système, Mécanismes et Apport à la Modélisation, Ph.D Thesis, Université Paris-Est (
  158. 158.
    J. Monnier, L. Legrand, L. Bellot-Gurlet et al., Study of archaeological artefacts to refine the model of iron long-term indoor atmospheric corrosion. Journal of Nuclear Materials 379, 105–111 (2008)ADSGoogle Scholar
  159. 159.
    J. Monnier, L. Bellot-Gurlet, D. Baron et al., A methodology for Raman structural quantification imaging and its application to iron indoor atmospheric corrosion products. J. Raman Spectrosc. 42, 773–781 (2011)ADSGoogle Scholar
  160. 160.
    S. Bernad, T. Soulimane, S. Lecomte, Redox and conformational equilibria of cytochrome c\(_{552}\) from thermus thermophilus adsorbed on chemically modified silver electrode probed by SERS. J. Raman Spectrosc. 35, 47–54 (2004)ADSGoogle Scholar
  161. 161.
    F. Salpin, F. Trivier, S. Lecomte et al., A new quantitative method: non-destructive study by Raman spectroscopy of dyes fixed on wool fibres. J. Raman Spectrosc. 37, 1403–1410 (2006)ADSGoogle Scholar
  162. 162.
    F. Dubois, C. Mendibide, T. Pagnier et al., Raman mapping of corrosion products formed onto spring steels during salt spray experiments. A correlation between the scale composition and the corrosion resistance. Corros. Sci. 50, 3401–3409 (2008)Google Scholar
  163. 163.
    S. Keren, C. Zavaleta, Z. Cheng et al., Noninvasive molecular imaging of small living subjects using Raman spectroscopy. PNAS 105, 5844–5849 (2008)ADSGoogle Scholar
  164. 164.
    A. Beljebbar, O. Bouché, M.D. Diébold et al., Identification of Raman spectroscopic markers for the characterization of normal and adenocarcinomatous colonic tissues. Crit. Rev. Oncol. Hematol. 72, 255–264 (2009)Google Scholar
  165. 165.
    B.R. Lutz, C.E. Dentinger, L.N. Nguyen et al., Spectral analysis of multiplex Raman probe signatures. ACS Nano 2, 2306–2314 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • G. Gouadec
    • 1
  • L. Bellot-Gurlet
    • 1
  • D. Baron
    • 1
  • Ph. Colomban
    • 1
  1. 1.Laboratoire de Dynamique, Interactions et Réactivité (LADIR)UMR 7075, CNRS et Université Pierre et Marie Curie (UPMC - Paris 6)ParisFrance

Personalised recommendations