Skip to main content

Raman Mapping for the Investigation of Nano-phased Materials

  • Chapter
  • First Online:
Raman Imaging

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 168))

Abstract

Nanosized and nanophased materials exhibit special properties. First they offer a good compromise between the high density of chemical bonds by unit volume, needed for good mechanical properties and the homogeneity of amorphous materials that prevents crack initiation. Second, interfaces are in very high concentration and they have a strong influence on many electrical and redox properties. The analysis of nanophased, low crystallinity materials is not straigtforward. The recording of Raman spectra with a geometric resolution close to \(0.5\,\upmu {\text{ m}^3}\) and the deep understanding of the Raman signature allow to locate the different nanophases and to predict the properties of the material. Case studies are discussed: advanced polymer fibres, ceramic fibres and composites, textured piezoelectric ceramics and corroded (ancient) steel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(t_\mathrm{ spec}\) must include the effective acquisition time but also the time-out for the displacements of the motorized table (usually negligible) for the (optional) auto-focus sequence, for the gratings rotation (in case of multi-window recording) and for data saving.

  2. 2.

    This program is available from the authors.

References

  1. G. Gouadec, Ph Colomban, Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog. Cryst. Growth Charact. Mater. 53, 1–56 (2007)

    Google Scholar 

  2. W. Kiefer, (ed.), G. Gouadec, (Guest ed.), Ph. Colomban (Guest ed.), Special issue on the Raman study of nanomaterials. J. Raman Spectr. 38, 597–796 (2007)

    Google Scholar 

  3. G. Turrell, Chap 4: Raman Imaging, in Raman Microscopy Developments and Applications, ed. by G. Turrell, J. Corset (Academic Press, London, 1996)

    Google Scholar 

  4. Ph. Colomban, Raman analyses and “Smart Imaging" of nanophases and nanosized materials. Spectrosc. Eur. 15, 8–16 (2003)

    Google Scholar 

  5. M. Havel, Ph. Colomban, Smart Raman and Rayleigh Spectroscopy for the analysis of nanomaterials. Microsc. Anal. 20, 13–15 (2006)

    Google Scholar 

  6. Ph. Colomban, Raman Microspectrometry and Imaging of Ceramic Fibers in CMCs and MMCs, in Advances in Ceramic Matrix Composites V, ed. by N.P. Bansal, J.P. Singh, E. Ustundag (The American Ceramic Society, Westerville, 2000)

    Google Scholar 

  7. M. Baranska, L.M. Proniewicz, Raman mapping of caffeine alkaloid. Vibr. Spectr. 48, 153–157 (2008)

    Google Scholar 

  8. D.W. Piston, Choosing objective lenses: the importance of numerical aperture and magnification in digital optical microscopy. Biol. Bull. 195, 1–4 (1998)

    Google Scholar 

  9. M. Born, E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1985)

    Google Scholar 

  10. E. Abbe, Archiv. Mikroscopische Anat. 9, 413 (1873)

    Google Scholar 

  11. P.J. Pauzauskie, D. Talaga, K. Seo et al., Polarized Raman confocal microscopy of single gallium nitride nanowires. J. Am. Chem. Soc. 127, 17146–17147 (2005)

    Google Scholar 

  12. D.A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977)

    Google Scholar 

  13. M. Delhaye, J. Barbillat, J. Aubard et al., Chap 3: Instrumentation, in Raman Microscopy Developments and Applications, ed. by G. Turrell, J. Corset (Academic Press, London, 1996)

    Google Scholar 

  14. I. De Wolf, Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond. Sci. Technol. 11, 139–154 (1996)

    ADS  Google Scholar 

  15. G. Turrell, M. Delhaye, P. Dhamelincourt, Chap 2: Characteristics of Raman Microscopy. in Raman Microscopy Developments and Applications. (Academic Press, London, 1996)

    Google Scholar 

  16. C.J.R. Sheppard, T. Wilson, Depth of field in the scanning microscope. Optics Lett. 3, 115–117 (1978)

    ADS  Google Scholar 

  17. C.-B. Juang, L. Finzi, C.J. Bustamante, Design and application of a computer-controlled confocal scanning differential polarization microscope. Rev. Sci. Instrum. 59, 2399–2408 (1988)

    ADS  Google Scholar 

  18. V.K. Ramshesh, J.J. Lemasters, Pinhole shifting lifetime imaging microscopy. J. Biomed. Opt. 13, 064001 (2008)

    ADS  Google Scholar 

  19. K. Kneipp, M. Moskovits, H. Kneipp, Surface-Enhanced Raman Scattering. (Springer, Berlin, 2006)

    Google Scholar 

  20. N.P.W. Pieczonka, R.F. Aroca, Single molecule analysis by surface-enhanced Raman scattering. Chem. Soc. Rev. 37, 946–954 (2008)

    Google Scholar 

  21. M. Montagna, R. Dusi, Raman scattering from small spherical particles. Phys. Rev. B 52, 10080–10089 (1995)

    ADS  Google Scholar 

  22. A. Roy, A.K. Sood, Growth of CdS\(_{x}\)Se\(_{1-x}\) nanoparticles in glass matrix by isochronal thermal annealing: confined acoustic phonons and optical absorptions studies. Solid State Comm. 97, 97–102 (1996)

    ADS  Google Scholar 

  23. M. Ferrari, F. Gonella, M. Montagna et al., Detection and size determination of Ag nanoclusters in ion-exchanged soda-lime glasses by waveguided Raman spectroscopy. J. Appl. Phys. 79, 2055–2059 (1996)

    ADS  Google Scholar 

  24. V. Paillard, P. Puech, M.A. Laguna et al., Improved one-phonon confinement model for an accurate size determination of silicon nanocrystals. J. Appl. Phys. 86, 1921–1924 (1999)

    ADS  Google Scholar 

  25. W.K. Choi, Y.W. Ho, V. Ng, Effect of size of Ge nanocrystals embedded in SiO\(_{2}\) on Raman spectra. Mater. Phys. Mech. 4, 46–50 (2001)

    ADS  Google Scholar 

  26. M. Ivanda, K. Babocsi, C. Dem et al., Low wavenumber Raman scattering from CdS\(_{x}\)Se\(_{1-x}\) quantum dots embedded in a glass matrix. Phys. Rev. B 67, 235329 (2003)

    ADS  Google Scholar 

  27. K.W. Adu, Q. Xiong, H.R. Gutierrez et al., Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires. Appl. Phys. A85, 287 (2006)

    ADS  Google Scholar 

  28. M. Ivanda, A. Hohl, M. Montagna et al., Raman scattering of acoustical modes of silicon nanoparticles embedded in silica matrix. J. Raman Spectrosc. 37, 161 (2006)

    Google Scholar 

  29. M. Ivanda, K. Furic, S. Music et al., Low wavenumber Raman scattering of nanoparticle and nanocomposite materials. J. Raman Spectr. 38, 647–659 (2007)

    Google Scholar 

  30. C. Pinghini, D. Aymes, N. Millot et al., Low-frequency Raman characterization of size-controlled anatase TiO\(_{2}\) nanopowders prepared by continuous hydrothermal syntheses. J. Nanopart. Res. 9, 309–315 (2007)

    Google Scholar 

  31. S.K. Ram, M.N. Islam, S. Kumar et al., Evidence of bimodal crystallite size distribution in \(\mu \)c-Si:H films. Mater. Sci. Eng. A 159–160, 34–37 (2009)

    Google Scholar 

  32. S.K. Gupta, R. Desai, P.K. Jha et al., Titanium dioxide synthesized using Titanium chloride: size effect study using Raman spectroscopy and photoluminescence. J. Raman Spectr. 41, 350–355 (2010)

    Google Scholar 

  33. D. Richards, Near-field microscopy: throwing light on the nanoworld. Phil. Trans. R. Soc. Lond. A 361, 2843–2857 (2003)

    ADS  Google Scholar 

  34. E. Bailo, V. Deckert, Tip-enhanced Raman scattering. Chem. Soc. Rev. 37, 921–930 (2008)

    Google Scholar 

  35. B.-S. Yeo, J. Stadler, T. Schmid et al., Tip-enhanced Raman spectroscopy—Its status, challenges and future directions. Chem. Phys. Lett. 472, 1–13 (2009)

    ADS  Google Scholar 

  36. N.J. Everall, Confocal Raman microscopy: why the depth resolution and spatial accuracy can be much worse than you think. Appl. Spectr. 54, 1515–1520 (2000)

    ADS  Google Scholar 

  37. J.P. Tomba, J.M. Pastor, Confocal Raman microspectroscopy with dry objectives: a depth profiling study on polymer films. Vibr. Spectr. 44, 62–68 (2007)

    Google Scholar 

  38. T. Jawhari, J.C. Merino, J.M. Pastor, Micro-Raman spectroscopy study of the process of microindentation in polymers. J. Mater. Sci. 27, 2231–2242 (1992)

    ADS  Google Scholar 

  39. S. Schuckler, S.W. Huffman, I.W. Levin, Vibrational microspectroscopic imaging: spatial resolution enhancement. Proc. SPIE 5321, 157 (2004)

    ADS  Google Scholar 

  40. J. Kasim, Y. Ting, Y.Y. Meng et al., Near-field Raman imaging using optically trapped dielectric microsphere. Opt. Express 16, 7976 (2008)

    ADS  Google Scholar 

  41. A. Atkinson, S.C. Jain, Spatially resolved stress analysis using Raman spectroscopy. J. Raman Spectrosc. 30, 885–891 (1999)

    ADS  Google Scholar 

  42. B. Dietrich, K.F. Dombrowski, Experimental challenges of stress measurements with resonant Micro-Raman spectroscopy. J. Raman Spectrosc. 30, 893–897 (1999)

    ADS  Google Scholar 

  43. K. Chikama, K. Matsubara, S. Oyama et al., Three-dimensional confocal Raman imaging of volume holograms formed in ZrO\(_{2}\) nanoparticle-photopolymer composite materials. J. Appl. Phys. 103, 113108 (2008)

    ADS  Google Scholar 

  44. L.-H. He, E.A. Carter, M.V. Swain, Characterization of nanoindentation-induced residual stresses in human enamel by Raman microspectroscopy. Anal. Bioanal. Chem. 389, 1185–1192 (2007)

    Google Scholar 

  45. W.B. White, The structure of particles and the structure of crystals: information from vibrational spectroscopy. J. Ceram. Process. Res. 6, 1–9 (2005)

    Google Scholar 

  46. Ph Colomban, F. Romain, A. Neiman et al., Double Perovskites with oxygen structural vacancies: Raman spectra, conductivity and water uptake. Solid State Ionics 145, 339–347 (2001)

    Google Scholar 

  47. J.E. Spanier, R.D. Robinson, F. Zhang et al., Size-dependent properties of CeO\(_{2-y}\) nanoparticles as studied by Raman scattering. Phys. Rev. B 64, 2450407 (2001)

    Google Scholar 

  48. I. Kosacki, T. Suzuki, V. Petrovsky et al., Raman scattering and lattice defects in nanocrystalline CeO\(_{2}\) thin films. Solid State Ionics 149, 99–105 (2002)

    Google Scholar 

  49. A.V. Gomonnai, Y.M. Azhniuk, V.O. Yukhymchuk et al., Confinement-, surface- and disorder-related effects in the resonant Raman spectra of nanometric CdS\(_{1-x}\)Se\(_{x}\) crystals. Phys. Status Solidi B 239, 490–499 (2003)

    ADS  Google Scholar 

  50. D. Chiriu, P.C. Ricci, C.M. Carbonaro, Vibrational properties of mixed (Y\(_{3}\)Al\(_{5}\)O\(_{12})_{x }\)- (Y\(_{3}\)Sc\(_{2}\)Ga\(_{3}\)O\(_{12})_{1-x }\)crystals. J. Appl. Phys. 100, 033101–033105 (2006)

    ADS  Google Scholar 

  51. Ph Colomban, A. Tournié, L. Bellot-Gurlet, Raman identification of glassy silicates used in ceramic, glass and jewellry: a tentative differentiation guide. J. Raman Spectrosc. 37, 841–852 (2006)

    ADS  Google Scholar 

  52. I.H. Campbell, P.M. Fauchet, The effects of mycrocrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Comm. 58, 739–741 (1986)

    ADS  Google Scholar 

  53. K.R. Patton, M.R. Geller, Phonons in a nanoparticle mechanically coupled to a substrate. Phys. Rev. B 67(155), 418 (2003)

    Google Scholar 

  54. S. Hofmann, C. Ducati, R.J. Neil et al., Gold catalysed growth of silicon nanowires by plasma enhanced chemical vapor deposition. J. Appl. Phys. 94, 6005–6012 (2003)

    ADS  Google Scholar 

  55. Q. Xiong, R. Gupta, K.W. Adu et al., Raman spectroscopy and structure of crystalline gallium phosphide nanowires. J. Nanosci. Nanotech. 3, 335–339 (2003)

    Google Scholar 

  56. C. Trallero-Giner, Optical phonons and resonant Raman scattering in II–VI spheroidal quantum dots. Phys. Status Solidi B 241, 572–578 (2004)

    ADS  Google Scholar 

  57. A.K. Arora, M. Rajalakshmi, T.R. Ravindran, Phonon Confinement in Nanostructured Materials, in Encyclopedia of Nanoscience and Nanotechnology, ed. by H.S. Nalwa (American Scientific Publishers, Valencia, 2004)

    Google Scholar 

  58. L. Saviot, D.B. Murray, M.D.C. Marco de Lucas, Vibrations of free and embedded anisotropic elastic spheres: application to low-frequency Raman scattering of silicon nanoparticles in silica. Phys. Rev. B 69, 113402 (2004)

    Google Scholar 

  59. K.-Y. Lee, J.-R. Lim, H. Rho et al., Evolution of optical phonons in CdS nanowires, nanobelts, and nanosheets. Appl. Phys. Lett. 91, 201901 (2007)

    ADS  Google Scholar 

  60. A.G. Rolo, M.I. Vasilevskiy, Raman spectroscopy of optical phonons confined in semiconductor quantum dots and nanocrystals. J. Raman Spectr. 38, 618–633 (2007)

    ADS  Google Scholar 

  61. Y.-T. Nien, B. Zaman, J. Ouyang et al., Raman scattering for the size of CdSe and CdS nanocrystals and comparison with other techniques. Mater. Lett. 62, 4522–4524 (2008)

    Google Scholar 

  62. S. Pojprapai, J.L. Jones, M. Hoffman, Determination of domain orientation in Lead Zirconate Titanate ceramics by Raman spectroscopy. Appl. Phys. Lett. 88, 162903 (2006)

    ADS  Google Scholar 

  63. M. Deluca, T. Sakashita, G. Pezzotti, Polarized Raman scattering of domain structures in polycrystaline Lead Zirconate Titanate. Appl. Phys. Lett. 90, 051919 (2007)

    ADS  Google Scholar 

  64. M. Becker, H. Scheel, S. Christiansen et al., Grain orientation, texture, and internal stress optically evaluated by micro-Raman spectroscopy. J. Appl. Phys. 101, 063531 (2007)

    ADS  Google Scholar 

  65. D.B. Murray, C.H. Netting, R.B. Mercer et al., Polarizability calculation of vibrating nanoparticles for intensity of low wavenumber Raman scattering. J. Raman Spectr. 38, 770–779 (2007)

    ADS  Google Scholar 

  66. H.M. Fan, X.F. Fan, Z.H. Ni et al., Orientation-dependant Raman spectroscopy of single Wurtzite CdS nanowires. J. Phys. Chem. C 112, 1865–1870 (2008)

    Google Scholar 

  67. C. Galiotis, Laser Raman spectroscopy, a new stress/strain measurement technique for the remote and online non-destructive inspection of fiber reinforced polymer composites. Mater. Technol. 8, 203–209 (1993)

    Google Scholar 

  68. L.S. Schadler, C. Galiotis, Fundamentals and applications of micro Raman spectroscopy to strain measurements in fibre reinforced composites. Inter. Mater. Rev. 40, 116–134 (1995)

    Google Scholar 

  69. E. Anastassakis, Selection rules of Raman scattering by optical phonons in strained cubic crystals. J. Appl. Phys. 82, 1582–1591 (1997)

    ADS  Google Scholar 

  70. G. Lucazeau, Effect of pressure and temperature on Raman spectra of solids: anharmonicity. J. Raman Spectrosc. 34, 478–496 (2003)

    ADS  Google Scholar 

  71. D. Bollas, J. Parthenios, C. Galiotis, Effect of stress and temperature on the optical phonons of aramid fibers. Phys. Rev. B 73, 094103 (2006)

    ADS  Google Scholar 

  72. H. Richter, Z.P. Wang, L. Ley, The one phonon Raman spectrum in microcrystalline silicon. Solid State Comm. 39, 625–629 (1981)

    ADS  Google Scholar 

  73. P. Parayanthal, F.H. Pollak, Raman scattering in alloy semiconductors: “spatial correlation” model. Phys. Rev. Lett. 52, 1822–1825 (1984)

    ADS  Google Scholar 

  74. H. Lamb, On the vibrations of an elastic sphere. Proc. London Math. Soc. 13, 189–212 (1882)

    MathSciNet  MATH  Google Scholar 

  75. A. Tamura, K. Higeta, T. Ichinokawa, Lattice vibrations and specific heat of a small particle. J. Phys. C: Solid State Phys. 15, 4975–4991 (1982)

    ADS  Google Scholar 

  76. E. Duval, Far-Infrared and Raman vibrational transitions of a solid sphere: selection rules. Phys. Rev. B 46, 5795–5797 (1992)

    ADS  Google Scholar 

  77. A. Tanaka, S. Onari, T. Arai, Low-frequency Raman scattering from CdS microcrystals embedded in a Germanium Dioxide glass matrix. Phys. Rev. B 47, 1237–1243 (1993)

    ADS  Google Scholar 

  78. L. Saviot, D.B. Murray, The connection between elastic scattering cross sections and acoustic vibrations of an embedded nanoparticle. Phys. Status Solidi C 1, 2634–2637 (2004)

    ADS  Google Scholar 

  79. E. Duval, A. Boukenter, B. Champagnon, Vibration eigenmodes and size of microcrystallites in glass: observation by very-low-frequency Raman scattering. Phys. Rev. Lett. 56, 2052–2055 (1986)

    ADS  Google Scholar 

  80. P. Verma, W. Cordts, G. Irmer et al., Acoustic vibrations of semiconductor nanocrystals in doped glasses. Phys. Rev. B 60, 5778–5785 (1999)

    ADS  Google Scholar 

  81. M.C. Klein, F. Hache, D. Ricard et al., size dependence of electron–phonon coupling in semiconductor nanospheres: the case of CdSe. Phys. Rev. B 42, 11123–11132 (1990)

    ADS  Google Scholar 

  82. F. Comas, C. Trallero-Giner, N. Studart et al., Interface optical phonons in spheroidal dots: Raman selection rules. Phys. Rev. B 65, 073303 (2002)

    ADS  Google Scholar 

  83. E.P. Pokatilov, S. Klimin, V.M. Fomin et al., Multi-phonon Raman scattering in semiconductor nanocrystals: importance of non-adiabatic transitions. Phys. Rev. B 65, 075316 (2002)

    ADS  Google Scholar 

  84. M.I. Vasilevskiy, Dipolar vibrational modes in spherical semiconductor quantum dots. Phys. Rev. B 66, 195326 (2002)

    ADS  Google Scholar 

  85. V.A. Fonoberov, A.A. Balandin, Polar optical phonons in Wurtzite spheroidal quantum dots: theory and application to ZnO and ZnO/MgZnO nanostructures. J. Phys. Cond. Matter 17, 1085–1097 (2005)

    ADS  Google Scholar 

  86. Q.H. Zhong, Optical phonon modes in a free-standing quantum wire with ring geometry. Phys. Lett. A 372, 5932–5937 (2008)

    ADS  MATH  Google Scholar 

  87. H. Shinzawa, K. Awa, W. Kanematsu et al., Multivariate data analysis for Raman spectroscopic imaging. J. Raman Spectr. 40, 1720–1725 (2009)

    ADS  Google Scholar 

  88. I. Noda, Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy. Appl. Spectrosc. 47, 1329–1336 (1993)

    ADS  Google Scholar 

  89. Y.M. Jung, I. Noda, New approaches to generalized two-dimensional correlation spectroscopy and its applications. Appl. Spectr. Rev. 41, 515–547 (2006)

    ADS  Google Scholar 

  90. M.A. Czarnecki, Interpretation of two-dimensional correlation spectra: science or art? Appl. Spectrosc. 52, 1583–1590 (1998)

    ADS  Google Scholar 

  91. M.A. Czarnecki, Two-dimensional correlation spectroscopy: effect of normalization of the dynamic spectra. Appl. Spectrosc. 53, 1392–1397 (1999)

    ADS  Google Scholar 

  92. G. Gouadec, J.-P. Forgerit, Ph Colomban, Choice of the working conditions for Raman extensometry of carbon and SiC fibers by 2D correlation. Comp. Sci. Technol. 62, 505–511 (2002)

    Google Scholar 

  93. C. Thomsen, S. Reich, Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85, 5214–5217 (2000)

    ADS  Google Scholar 

  94. F. Tuinstra, J.L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970)

    ADS  Google Scholar 

  95. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000)

    ADS  Google Scholar 

  96. R. Carles, A. Mlayah, M.B. Amjoud et al., Structural characterization of Ge microcrystals in Ge\(_{x}\)C\(_{1-x}\) films. Jap. J. Appl. Phys. 31(pt 1), 3511–3514 (1992)

    ADS  Google Scholar 

  97. Y.K. Kim, H.M. Jang, Raman lineshape analysis of nano-structural evolution in cation—ordered ZrTiO\(_{4}\)—based dielectrics. Solid State Comm. 127, 433–437 (2003)

    ADS  Google Scholar 

  98. A.K. Arora, M. Rajalakshmi, T.R. Ravindran et al., Raman spectroscopy of optical phonon confinement in nanostructured materials. J. Raman Spectr. 38, 604–617 (2007)

    ADS  Google Scholar 

  99. M. Havel, Ph Colomban, Skin/Bulk nanostructure and corrosion of SiC based fibres. A surface Rayleigh and Raman study. J. Raman Spectrosc. 34, 786–794 (2003)

    ADS  Google Scholar 

  100. M. Havel, Ph. Colomban, Rayleigh and Raman images of the bulk/surface nanostructure of SiC based fibres. Compos. Part B. 35, 139–147 (2004)

    Google Scholar 

  101. M. Havel, D. Baron, Ph Colomban, Smart Raman/Rayleigh imaging of nanosized SiC materials using the spatial correlation model. J. Mater. Sci. 39, 6183–6190 (2004)

    ADS  Google Scholar 

  102. A. Tanaka, S. Onari, T. Arai, Raman scattering from CdS microcrystals embedded in a Germanate glass matrix. Phys. Rev. B 45, 6587–6592 (1992)

    ADS  Google Scholar 

  103. J. Zuo, C. Xu, Y. Liu et al., Crystallite size effects on the Raman spectra of Mn\(_{3}\)O\(_{4}\). Nanostruct. Mater. 10, 1331–1335 (1998)

    Google Scholar 

  104. K.K. Tiong, P.M. Amirtharaj, F.H. Pollak et al., Effects of As\(^{+}\) ion implantation on the Raman spectra of GaAs: “Spatial Correlation” interpretation. Appl. Phys. Lett. 44, 122–124 (1984)

    ADS  Google Scholar 

  105. J. Zuo, C. Xu, B. Hou et al., Raman spectra of nanophase Cr\(_{2}\)O\(_{3}\). J. Raman Spectrosc. 27, 921–923 (1996)

    ADS  Google Scholar 

  106. A. Fischer, L. Anthony, A.D. Compaan, Raman analysis of short-range clustering in Laser—Deposited CdS\(_{x}\)Te\(_{1-x}\) Films. Appl. Phys. Lett. 72, 2559–2561 (1998)

    ADS  Google Scholar 

  107. W.F. Zhang, Y.L. He, M.S. Zhang et al., Raman scattering study on anatase TiO\(_{2}\) nanocrystals. J. Phys. D 33, 912–916 (2000)

    ADS  Google Scholar 

  108. Y.K. Kim, H.M. Jang, Polarization leakage and asymmetric Raman line broadening in microwave dielectric ZrTiO\(_{4}\). J. Phys. Chem. Solids 64, 1271–1278 (2003)

    ADS  Google Scholar 

  109. H.M. Jang, T.-Y. Kim, I.-W. Park, Nano-sized clusters with tetragonal symmetry in PbTiO\(_{3}\)—based relaxor ferroelectrics. Sol. State Comm. 127, 645–648 (2003)

    ADS  Google Scholar 

  110. R.S. Chen, C.C. Chen, Y.S. Huang et al., A comparative study of microstructure of RuO\(_{2}\) nanorods via Raman scattering and field emission scanning electron microscopy. Sol. State Comm. 131, 349–353 (2004)

    ADS  Google Scholar 

  111. X.J. Ning, P. Pirouz, The microstructure of SCS-6 SiC fibre. J. Mater. Res. 6, 2234–2248 (1991)

    ADS  Google Scholar 

  112. A.B. Mann, M. Balooch, J.H. Kinney et al., Radial variations in modulus and hardness in SCS-6 silicon carbide fibers. J. Am. Ceram. Soc. 82, 111–116 (1999)

    Google Scholar 

  113. M. Havel, D. Baron, L. Mazerolles et al., Phonon confinement in SiC nanocrystals: comparison of the size determination using transmission electron microscopy and Raman spectroscopy. Appl. Spectrosc. 61, 855–859 (2007)

    ADS  Google Scholar 

  114. S. Ganesan, A.A. Maradudin, J. Oitmaa, A lattice theory of morphic effects in crystals of the diamond structure. Ann. Phys. 56, 556–594 (1970)

    ADS  Google Scholar 

  115. E. Anastassakis, A. Pinczuk, E. Burnstein et al., Effect of static uniaxial stress on the Raman spectrum of silicon. Solid State Comm. 8, 133–138 (1970)

    ADS  Google Scholar 

  116. E. Anastassakis, Inelastic light scattering in the presence of uniaxial stress. J. Raman Spectr. 10, 64–76 (1981)

    ADS  Google Scholar 

  117. I. De Wolf, H.E. Maes, S.K. Jones, Stress measurements in silicon devices through Raman spectroscopy: bridging the gap between theory and experiment. J. Appl. Phys. 79, 7148–7156 (1996)

    ADS  Google Scholar 

  118. I. De Wolf, Stress measurements in Si microelectronics devices using Raman spectroscopy. J. Raman Spectrosc. 30, 877–883 (1999)

    ADS  Google Scholar 

  119. I. De Wolf, Raman spectroscopy: about chips and stress. Spectroscopy Europe 15, 6–13 (2002)

    Google Scholar 

  120. J. Wu, Ph Colomban, Raman spectroscopy study on the stress distribution in the continuous Fibre-reinforced CMC. J. Raman Spectrosc. 28, 523–529 (1997)

    ADS  Google Scholar 

  121. G. Gouadec, S. Karlin, Ph. Colomban, Raman Extensometry Study of NLM202 and Hi-Nicalon SiC Fibres. Compos. Part B 29, 251–261 (1998)

    Google Scholar 

  122. B. Mottershead, S.J. Eichhorn, Deformation micromechanics of model regenerated cellulose fibre-epoxy/polyester composites. Comp. Sci.& Tech. 67, 2150–2159 (2007)

    Google Scholar 

  123. W.T.Y. Tze, S.C. O’Neill, C.P. Tripp et al., Evaluation of load transfer in the cellulosic–fiber/polymer interphase using a micro-Raman tensile test. Wood and Fiber Sci. 39, 184–195 (2007)

    Google Scholar 

  124. L. Zhenkun, Q. Wei, K. Yilan et al., Stress transfer of single fiber/microdroplet tensile test studied by micro-Raman spectroscopy. Compos. Part A 39, 113–118 (2008)

    Google Scholar 

  125. C. Galiotis, A. Paipetis, C. Marston, Unification of fibre/matrix interfacial measurements with Raman microscopy. J. Raman Spectrosc. 30, 899–912 (1999)

    ADS  Google Scholar 

  126. A. Paipetis, C. Galiotis, Y.C. Liu et al., Stress-transfer from the matrix to the fibre in a fragmentation test: Raman experiments and analytical modeling. J. Comp. Mater. 33, 377–399 (1999)

    Google Scholar 

  127. E. Pisanova, S. Zhandarov, E. Mäder et al., Three techniques of interfacial bond strength estimation from direct observation of crack initiation and propagation in polymer–fibre systems. Compos. Part A 32, 435–443 (2001)

    Google Scholar 

  128. R.J. Young, C. Thongpin, J.L Stanford et al., Fragmentation analysis of glass fibres in model composites through the use of Raman spectroscopy. Compos. Part A 32, 253–269 (2001)

    Google Scholar 

  129. P.I. Gonzalez-Chi, R.J. Young, Deformation micromechanics of a thermoplastic–thermoset interphase of epoxy composites reinforced with polyethylene fiber. J. Mater. Sci. 39, 7049–7059 (2004)

    ADS  Google Scholar 

  130. G. Anagnostopoulos, A.G. Andreopoulos, J. Parthenios et al., Global method for measuring stress in polymer fibers at elevated temperatures. Appl. Phys. Lett. 87, 131910 (2005)

    ADS  Google Scholar 

  131. G. Anagnostopoulos, J. Parthenios, A.G. Andreopoulos et al., An experimental and theoretical study of the stress transfer problem in fibrous composites. Acta Mater. 53, 4173–4183 (2005)

    Google Scholar 

  132. A.B. Coffey, C.M. O’Bradaigh, R.J. Young, Interfacial stress transfer in an aramid reinforced thermoplastic elastomer. J. Mater. Sci. 42, 8053–8061 (2006)

    ADS  Google Scholar 

  133. R. Kumar, S.B. Cronin, Optical properties of carbon nanotubes under axial strain. J. Nanosci. Nanotech. 8, 1–9 (2007)

    Google Scholar 

  134. J.R. Wood, Q. Zhao, M.D. Frogley et al., Carbon nanotubes: from molecular to macroscopic sensors. Phys. Rev. B 62, 7571–7575 (2000)

    ADS  Google Scholar 

  135. Q. Zhao, M.D. Frogley, H.D. Wagner, The use of carbon nanotubes to sense matrix stress around a single glass fiber. Comp. Sci. Technol. 61, 2139–2143 (2001)

    Google Scholar 

  136. Q. Zhao, M.D. Frogley, H.D. Wagner, Direction-sensitive stress measurements with carbon nanotubes sensors. Polym. Adv. Techn. 13, 759–764 (2002)

    Google Scholar 

  137. C.A. Cooper, R.J. Young, M. Halsall, Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Compos. Part A 32, 401–411 (2001)

    Google Scholar 

  138. M.S. Dresselhaus, G. Dresselhaus, R. Saito et al., Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005)

    ADS  Google Scholar 

  139. C. Thomsen, S. Reich, Chap 3: Raman Scattering in Carbon Nanotubes. in Light Scattering in Solids IX: Novel Materials and Techniques, ed. by M. Cardona, R. Merlin (Springer, Heidelberg, 2006)

    Google Scholar 

  140. V. Domnich, Y. Aratyn, W.M. Kriven et al., Temperature Dependance of silicon hardness: experimental evidence of phase transformations. Rev. Adv. Mater. Sci 17, 33–41 (2008)

    Google Scholar 

  141. C.R. Das, H.C. Hsu, S. Dhara et al., A complete Raman mapping of phase transitions in Si under indentation. J. Raman Spectr. 41, 334–339 (2010)

    Google Scholar 

  142. S. Kouteva-Arguirova, V. Orlov, W. Seifert et al., Raman investigation of stress and phase transformation induced in silicon by indentation at high temperatures. Eur. Phys. J. Appl. Phys. 27, 279–283 (2004)

    ADS  Google Scholar 

  143. P. Puech, F. Demangeot, J. Frandon et al., GaN nanoindentation: a micro-Raman spectroscopy study of local strain fields. J. Appl. Phys. 96, 2853–2856 (2004)

    ADS  Google Scholar 

  144. N. Orlovskaya, D. Steinmetz, S. Yarmolenko et al., Detection of temperature- and stress-induced modifications of LaCoO\(_{3}\) by micro-Raman spectroscopy. Phys. Rev. B 72, 014122 (2005)

    ADS  Google Scholar 

  145. T. Wermelinger, C. Borgia, C. Solenthaler et al., 3-D Raman spectroscopy measurements of the symmetry of residual stress fields in plastically deformed sapphire crystals. Acta Mater. 55, 4657–4665 (2007)

    Google Scholar 

  146. C.R. Das, S. Dhara, H.C. Hsu et al., The mechanism of the recrystallization process in epitaxial GaN under dynamic stress field: atomistic origin of planar defect formation. J. Raman Spectr. 40, 1881–1884 (2009)

    ADS  Google Scholar 

  147. Y.B. Gerbig, S.J. Stranick, D.J. Morris et al., Effect of crystallographic orientation on phase transformations during indentation of silicon. J. Mater. Res. 24, 1172–1183 (2009)

    ADS  Google Scholar 

  148. T. Wermelinger, R. Spolenak, Correlating Raman peak shifts with phase transformation and defect densities: a comprehensive TEM and Raman study on silicon. J. Raman Spectr. 40, 679–686 (2009)

    ADS  Google Scholar 

  149. Ph Colomban, M. Havel, Raman imaging of stress-induced phase transformation in transparent ZnSe ceramics and Sapphire single crystal. J. Raman Spectrosc. 33, 789–795 (2002)

    ADS  Google Scholar 

  150. D. Neff, S SR, L. Bellot-Gurlet et al., Structural characterization of corrosion products on archaeological iron: an integrated analytical approach to establish corrosion forms. J. Raman Spectrosc. 35, 739–745 (2004)

    Google Scholar 

  151. S. Réguer, D. Neff, L. Bellot-Gurlet et al., Deterioration of iron archaeological artefacts: micro-Raman investigation on Cl-containing corrosion products. J. Raman Spectrosc. 38, 389–397 (2007)

    ADS  Google Scholar 

  152. L. Bellot-Gurlet, D. Neff, S. Réguer et al., Raman studies of corrosion layers formed on archaeological irons in various media. J. Nano Res. 8, 147–156 (2009)

    Google Scholar 

  153. Ph Colomban, S. Cherifi, G. Dexpert, Raman identification of corrosion products on automotive galvanized steel sheets. J. Raman Spectr. 39, 881–886 (2008)

    ADS  Google Scholar 

  154. P. Dillmann, G. Béranger, P. Piccardo et al. (eds). Corrosion of Metallic Heritage Artefacts. Investigation, Conservation and Prediction for Long-Term Behaviour, European federation of corrosion publications-EFC, vol. 48 (Woodhead, Cambridge, 2007)

    Google Scholar 

  155. D. Neff, L. Bellot-Gurlet, P. Dillmann et al., Raman imaging of ancient rust scales on archaeological iron artefacts for long-term atmospheric corrosion mechanisms study. J. Raman Spectrosc. 37, 1228–1237 (2006)

    ADS  Google Scholar 

  156. H. Antony, S. Perrin, P. Dillmann et al., Electrochemical study of indoor atmospheric corrosion layers formed on ancient iron artefacts. Electrochimica Acta 52, 7754–7759 (2007)

    Google Scholar 

  157. Monnier J (2008) Corrosion Atmosphérique sous Abri d’Alliages Ferreux Historiques. Caractérisation du Système, Mécanismes et Apport à la Modélisation, Ph.D Thesis, Université Paris-Est (http://tel.archives-ouvertes.fr/tel-00369510/fr/).

  158. J. Monnier, L. Legrand, L. Bellot-Gurlet et al., Study of archaeological artefacts to refine the model of iron long-term indoor atmospheric corrosion. Journal of Nuclear Materials 379, 105–111 (2008)

    ADS  Google Scholar 

  159. J. Monnier, L. Bellot-Gurlet, D. Baron et al., A methodology for Raman structural quantification imaging and its application to iron indoor atmospheric corrosion products. J. Raman Spectrosc. 42, 773–781 (2011)

    ADS  Google Scholar 

  160. S. Bernad, T. Soulimane, S. Lecomte, Redox and conformational equilibria of cytochrome c\(_{552}\) from thermus thermophilus adsorbed on chemically modified silver electrode probed by SERS. J. Raman Spectrosc. 35, 47–54 (2004)

    ADS  Google Scholar 

  161. F. Salpin, F. Trivier, S. Lecomte et al., A new quantitative method: non-destructive study by Raman spectroscopy of dyes fixed on wool fibres. J. Raman Spectrosc. 37, 1403–1410 (2006)

    ADS  Google Scholar 

  162. F. Dubois, C. Mendibide, T. Pagnier et al., Raman mapping of corrosion products formed onto spring steels during salt spray experiments. A correlation between the scale composition and the corrosion resistance. Corros. Sci. 50, 3401–3409 (2008)

    Google Scholar 

  163. S. Keren, C. Zavaleta, Z. Cheng et al., Noninvasive molecular imaging of small living subjects using Raman spectroscopy. PNAS 105, 5844–5849 (2008)

    ADS  Google Scholar 

  164. A. Beljebbar, O. Bouché, M.D. Diébold et al., Identification of Raman spectroscopic markers for the characterization of normal and adenocarcinomatous colonic tissues. Crit. Rev. Oncol. Hematol. 72, 255–264 (2009)

    Google Scholar 

  165. B.R. Lutz, C.E. Dentinger, L.N. Nguyen et al., Spectral analysis of multiplex Raman probe signatures. ACS Nano 2, 2306–2314 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Gouadec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gouadec, G., Bellot-Gurlet, L., Baron, D., Colomban, P. (2012). Raman Mapping for the Investigation of Nano-phased Materials. In: Zoubir, A. (eds) Raman Imaging. Springer Series in Optical Sciences, vol 168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28252-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28252-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28251-5

  • Online ISBN: 978-3-642-28252-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics