Advertisement

Raman Imaging pp 301-315 | Cite as

Tip-Enhanced Near-Field Optical Microscopy of Carbon Nanotubes

  • Carsten Georgi
  • Miriam Böhmler
  • Huihong Qian
  • Lukas Novotny
  • Achim HartschuhEmail author
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 168)

Abstract

We review recent experimental studies on single-walled carbon nanotubes on substrates using tip-enhanced near-field optical microscopy TENOM). High-resolution optical and topographic imaging with sub 15 nm spatial resolution is shown providing novel insights into the spectroscopic properties of these nanoscale materials. In the case of semiconducting nanotubes the simultaneous observation of Raman scattering and photoluminescence (PL) is possible enabling a direct correlation between vibrational and electronic properties on the nanoscale. So far applications of TENOM were focused on the spectroscopy of localized phonon modes, local band energy renormalizations induced by charge carrier doping, the environmental sensitivity of nanotube PL, and inter-nanotube energy transfer. At the end of this review we discuss remaining limitations and challenges.

Keywords

Raman Scattering Radial Breathing Mode Excitation Rate Single Nanotubes Subwavelength Aperture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Nicolai Hartmann and Tobias Gokus for sample and experimental support. Financial support by the German Science Foundation DFG through grant HA4405/3-1 and the Nanosystems Initiative Munich (NIM) is gratefully acknowledged.

References

  1. 1.
    M. Dyba, S. Hell, Phys. Rev. Lett. 88, 163901–163904 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    R.J. Kittel, C. Wichmann, T.M. Rasse, W. Fouquet, M. Schmidt, A. Schmid, D.A. Wagh, C. Pawlu, R.R. Kellner, K.I. Willig, S. Hell, E. Buchner, M. Heckmann, S.J. Sigrist, Science 312, 1051–1054 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess, Science 313, 1642–1645 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    M.J. Rust, M. Bates, X. Zhuang, Nature Methods 3, 793–796 (2006)CrossRefGoogle Scholar
  5. 5.
    L. Novotny, B. Hecht, Principles of nano-optics (Cambridge University Press, Cambridge, 2006)CrossRefGoogle Scholar
  6. 6.
    L. Cognet, D.A. Tsyboulski, J.D.R. Rocha, C.D. Doyle, J.M. Tour, R.B. Weisman, Science 316, 1465–1468 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    D.W. Pohl, W. Denk, M. Lanz, Appl. Phys. Lett. 44, 651–653 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    A. Lewis, M. Isaacson, A. Harootunian, A. Muray, Ultramicroscopy 13, 227–231 (1984)CrossRefGoogle Scholar
  9. 9.
    L. Novotny in Progress in Optics, vol. 50 ed by E. Wolf, (Elsevier, Amsterdam, 2007), pp. 137–184Google Scholar
  10. 10.
    J. Wessel, J. Opt. Soc. Am. B 2, 1538–1541 (1985)ADSCrossRefGoogle Scholar
  11. 11.
    J. Steidtner, B. Pettinger, Phys. Rev. Lett. 100, 236101–236104 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    H.G. Frey, S. Witt, K. Felderer, R. Guckenberger, Phys. Rev. Lett. 93, 200801–200804 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    A. Hartschuh, Angew. Chem. Int. Ed. 47, 8178–8198 (2008)CrossRefGoogle Scholar
  14. 14.
    S. Kawata, S.V.M. Shalaev (ed.) Tip enhancement, (Elsevier, Amsterdam, 2007)Google Scholar
  15. 15.
    E.M. Purcell, Phys. Rev. 69, 681 (1946)CrossRefGoogle Scholar
  16. 16.
    M. Thomas, R. Carminati, J.R. Arias-Gonzalez, J.-J. Greffet, Appl. Phys. Lett. 85, 3863–3865 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    A. Hartschuh, H. Qian, A.J. Meixner, N. Anderson, L. Novotny, Nano Lett. 5, 2310–2313 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    K. Aslan, I. Gryczynski, J. Malicka, E. Matveea, J.R. Lakowicz, C.D. Geddes, Anal. Biotechnol. 16, 55–62 (2005)CrossRefGoogle Scholar
  19. 19.
    L. Novotny, E.J. Sanchez, X.S. Xie, Ultramicroscopy 71, 21–29 (1998)CrossRefGoogle Scholar
  20. 20.
    S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs, Opt. Comm. 179, 1–7 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    C. Georgi, N. Hartmann, T. Gokus, A.A. Green, M.C. Hersam, A. Hartschuh, Chem. Phys. Chem. 9, 1460–1463 (2008)CrossRefGoogle Scholar
  22. 22.
    A. Jorio, M. S. Dresselhaus, G. Dresselhaus (eds.) Carbon Nanotubes, vol. 111, (Springer, Berlin Heidelberg New York, 2008)Google Scholar
  23. 23.
    P. Avouris, J. Chen, Materials Today 9, 46–54 (2006)CrossRefGoogle Scholar
  24. 24.
    A. Hartschuh, H.N. Pedrosa, L. Novotny, T.D. Krauss, Science 301, 1354–1356 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Reports. 409, 47–99 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, Berlin, 2004)Google Scholar
  27. 27.
    I.O. Maciel, N. Anderson, M.A. Pimenta, A. Hartschuh, H. Qian, M. Terrones, H. Terrones, J. Campos-Delgado, A.M. Rao, L. Novotny, A. Jorio, Nature Mat. 7, 878–883 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    A. Das, S. Pisana, S. Piscanec, B. Chakraborty, S.K. Saha, U.V. Waghmare, R. Yiang, H.R. Krishnamurhthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Nature Nanotech. 3, 210–215 (2008)CrossRefGoogle Scholar
  29. 29.
    S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R. Smalley, R.B. Weisman, Science 298, 2361–2366 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    F. Wang, G. Dukovic, L.E. Brus, T.F. Heinz, Science 308, 838–841 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi, A. Ruini, E. Molinari, M. S. Strano, C. Thomsen, C. Lienau, Phys. Rev. B, 72, 241402(R)–241405 (R) (2005)Google Scholar
  32. 32.
    S.-Y. Ju, W.P. Kopcha, F. Papadimitrakopoulos, Science 323, 1319–1323 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    T. Gokus, H. Harutyunyan, F. Hennrich, P.T. Araujo, M. Kappes, A. Jorio, A.A. Green, M.C. Hersam, M. Allegrini, A. Hartschuh, Appl. Phys. Lett. 92, 153116 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    A. Hartschuh, E.J. Sanchez, X.S. Xie, L. Novotny, Phys. Rev. Lett. 90, 095503–095504 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    A. Hartschuh, N. Anderson, L. Novotny, J. Microscopy 210, 234–240 (2003)MathSciNetCrossRefGoogle Scholar
  36. 36.
    N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, S. Kawata, Chem. Phys. Lett. 376, 174–180 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    D. Roy, M.E. Jiang, W. and Welland. Faraday Discussions 132, 215–225 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    S.S. Kharintsev, G.G. Hoffmann, G.de With, J. Loos. Nanotechnology 18, 315502–315509 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    D. Roy, J. Wang, C. Williams, J. Appl. Phys. 105, 013530 (2009)Google Scholar
  40. 40.
    R.M. Roth, N.C. Panoiu, M.M. Adams, R.M. Osgood Jr, C.C. Neacsu, M.B. Raschke, Optics Express 14, 2921–2931 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    H. Qian, P.T. Araujo, C. Georgi, T. Gokus, N. Hartmann, A.A. Green, A. Jorio, M.C. Hersam, L. Novotny, A. Hartschuh, Nano Lett. 8, 2706–2711 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    S. Kühn, U. Hakanson, L. Rogobete, V. Sandoghdar, Phys. Rev. Lett. 97, 017402–017405 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    P. Anger, P. Bharadwaj, L. Novotny, Phys. Rev. Lett. 96, 113002–113004 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    A. DeVita, J.C. Charlier, X. Blase, R. Car, Appl. Phys. A. 68, 283–286 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    D.L. Carroll, P. Redlich, P.M. Ajayan, J.C. Charlier, X. Blase, A. DeVita, R. Car, Phys. Rev. Lett. 78, 2811–2814 (1997)ADSCrossRefGoogle Scholar
  46. 46.
    L. Cognet, D.T. Tysboulski, J.-D.R. Rocha, C.D. Doyle, J.M. Tour, R.B. Weisman, Science 316, 1465–1468 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    A. Rajan, M.S. Strano, D.A. Heller, T. Hertel, K. Schulten, J. Phys. Chem. B 112, 6211–6213 (2008)CrossRefGoogle Scholar
  48. 48.
    H. Qian, C. Georgi, N. Anderson, A. A. Green, M. C. Hersam, L. Novotny, A. Hartschuh, phys. stat. sol. (b) 245, 2243–2246 (2008)Google Scholar
  49. 49.
    N. Anderson, A. Hartschuh, L. Novotny, J. Am. Chem. Soc. 127, 2533–2537 (2005)CrossRefGoogle Scholar
  50. 50.
    N. Anderson, A. Hartschuh, L. Novotny, Nano Lett. 7, 577–582 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    T. Yano, Y. Inouye, S. Kawata, Nano Lett. 6, 1269–1273 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    H. Qian, C. Georgi, N. Anderson, A.A. Green, M.C. Hersam, L. Novotny, A. Hartschuh, Nano Lett. 8(11), 1363–1367 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    J. Steidtner, B. Pettinger, Rev. Sci. Instrum. 78, 103104–103108 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    L. Novotny, M.R. Beversluis, K.S. Youngworth, T.G. Brown, Phys. Rev. Lett. 86, 5251–5254 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Carsten Georgi
    • 1
  • Miriam Böhmler
    • 1
  • Huihong Qian
    • 1
  • Lukas Novotny
    • 2
  • Achim Hartschuh
    • 1
    Email author
  1. 1.Department Chemie und Biochemie and CeNSLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.University of Rochester, The Institute of Optics, RochesterRochesterUSA

Personalised recommendations