Modeling of FACTS-Devices in Optimal Power Flow Analysis

  • Xiao-Ping Zhang
  • Christian Rehtanz
  • Bikash Pal
Part of the Power Systems book series (POWSYS)


In recent years, energy, environment, deregulation of power utilities have delayed the construction of both generation facilities and new transmission lines. Better utilisation of existing power system capacities by installing new FACTS-devices has become imperative. FACTS-devices are able to change, in a fast and effective way, the network parameters in order to achieve a better system performance. FACTS-devices, such as phase shifter, shunt or series compensation and the most recent developed converter-based power electronic devices, make it possible to control circuit impedance, voltage angle and power flow for optimal operation of power systems, facilitate the development of competitive electric energy markets, and stipulate the unbundling the power generation from transmission and mandate open access to transmission services, etc.


Power Flow Interior Point Method Optimal Power Flow Optimal Power Flow Problem Incremental Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kirchmayer, L.K.: Economic operation of power systems. John Wiley & Sons, New York (1958)Google Scholar
  2. 2.
    Kirchmayer, L.K.: Economic control of interconnected systems. John Wiley & Sons, New York (1959)Google Scholar
  3. 3.
    Carpentier, J.L.: Contribution a ‘l’etude du dispatching economique. Bulletin de la Societe Francaise des Electriciens 3, 431–447 (1962)Google Scholar
  4. 4.
    Dommel, H.W., Tinney, W.F.: Optimal power flow solutions. IEEE Trans. on PAS 87(10), 1866–1876 (1968)Google Scholar
  5. 5.
    Happ, H.H.: Optimal power dispatch – A comprehensive survey. IEEE Transactions on PAS 96, 841–854 (1977)Google Scholar
  6. 6.
    Carpentier, J.L.: Optimal power flows: uses, methods and developments. In: Proceedings of IFAC Conference (1985)Google Scholar
  7. 7.
    Stott, B., Alsc, O., Monticelli, A.: Security and optimization. Proceedings of the IEEE 75(12), 1623–1624 (1987)CrossRefGoogle Scholar
  8. 8.
    Carpentier, J.L.: Towards a secure and optimal automatic operation of power systems. In: Proceedings of Power Industry Computer Applications (PICA) Conference, pp. 2–37 (1987)Google Scholar
  9. 9.
    Wu, F.F.: Real-time network security monitoring, assessment and optimization. International Journal of Electrical Power and Energy Systems 10(2), 83–100 (1988)CrossRefGoogle Scholar
  10. 10.
    Chowdhury, B.H., Rahman, S.: A review of recent advances in economic dispatch. IEEE Transactions on Power Systems 5(4), 1248–1257 (1990)CrossRefGoogle Scholar
  11. 11.
    Huneault, M., Galiana, F.D.: A survey of the optimal power flow literature. IEEE Transactions on Power Systems 6(2), 762–770 (1991)CrossRefGoogle Scholar
  12. 12.
    IEEE Tutorial Course, Optimal power flow: solution techniques, requirements and challenges. IEEE Power Engineering Society (1996)Google Scholar
  13. 13.
    Momoh, J.A., El-Haway, M.E., Adapa, R.: A review of selected optimal power flow literature to 1993 Part 1 and Part 2. IEEE Transactions on Power Systems 14(1), 96–111 (1999)CrossRefGoogle Scholar
  14. 14.
    Carpentier, J.L.: Differential injections method: A general method for secure and optimal load flows. In: Proceedings of IFAC Conference (1973)Google Scholar
  15. 15.
    Stott, B., Marinho, J.L.: Linear programming for power system network security applications. IEEE Trans. on PAS 98(3), 837–848 (1979)Google Scholar
  16. 16.
    Alsc, O., Bright, J., Praise, M., Stott, B.: Further developments in LP-based optimal power flow. IEEE Transactions on Power Systems 5(3), 697–711 (1990)CrossRefGoogle Scholar
  17. 17.
    Burchett, R.C., Happ, H.H., Wirgau, K.A.: Large scale optimal power flow. IEEE Trans. on PAS 101(10), 3722–3732 (1982)Google Scholar
  18. 18.
    Burchett, R.C., Happ, H.H., Veirath, D.R.: Quadratically convergent optimal power flow. IEEE Trans. on PAS 103(11), 3267–3275 (1984)Google Scholar
  19. 19.
    El-Kady, M.A., Bell, B.D., Carvalho, V.F., Burchett, R.C., Happ, H.H., Veirath, D.R.: Quadratically convergent optimal power flow. IEEE Trans. on Power Systems 1(2), 98–105 (1986)CrossRefGoogle Scholar
  20. 20.
    Glavitsch, H., Spoerry, M.: Quadratic loss formula for reactive dispatch. IEEE Trans. on PAS 102(12), 3850–3858 (1983)Google Scholar
  21. 21.
    Sun, D.I., Ashley, B., Brewer, B., Hughes, A., Tinney, W.F.: Optimal power flow by Newton approach. IEEE Trans. on PAS 103(10), 2864–2880 (1984)Google Scholar
  22. 22.
    Maria, G.A., Findlay, J.A.: A Newton optimal power flow program for Ontario Hydro EMS. IEEE Trans. on Power Systems 2(3), 576–584 (1987)CrossRefGoogle Scholar
  23. 23.
    Tinny, W.F., Bright, J.M., Demaree, K.D., Hughes, B.A.: Some deficiencies in optimal power flow. IEEE Trans. on Power Systems 3(2), 676–682 (1988)CrossRefGoogle Scholar
  24. 24.
    Chang, S.K., Marks, G.E., Kato, K.: Optimal real-time voltage control. IEEE Trans. on Power Systems 5(3), 750–756 (1990)CrossRefGoogle Scholar
  25. 25.
    Hollenstein, W., Glavitch, H.: Linear programming as a tool for treating constraints in a Newton OPF. In: Proceedings of the 10th Power Systems Computation Conference (PSCC), Graz, Austria, August 19-24 (1990)Google Scholar
  26. 26.
    Karmarkar, N.: A new polynomial time algorithm for linear programming. Combinatorica 4, 373–395 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Vargas, L.S., Quintana, V.H., Vannelli, A.: A tutorial description of an interior point method and its applications to security-constrained economic dispatch. IEEE Trans. on Power Systems 8(3), 1315–1323 (1993)CrossRefGoogle Scholar
  28. 28.
    Lu, N., Unum, M.R.: Network constrained security control using an interior point algorithm. IEEE Transactions on Power Systems 8(3), 1068–1076 (1993)CrossRefGoogle Scholar
  29. 29.
    Zhang, X.P., Chen, Z.: Security-constrained economic dispatch through interior point methods. Automation of Electric Power Systems 21(6), 27–29 (1997)Google Scholar
  30. 30.
    Momoh, J.A., Guo, S.X., Ogbuobiri, E.C., Adapa, R.: The quadratic interior point method solving power system optimization problems. IEEE Trans. on Power Systems 9(3), 1327–1336 (1994)CrossRefGoogle Scholar
  31. 31.
    Granville, S.: Optimal reactive power dispatch through interior point methods. IEEE Transactions on Power Systems 9(1), 136–146 (1994)CrossRefGoogle Scholar
  32. 32.
    Wu, Y.-C., Debs, A., Marsten, R.E.: A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows. IEEE Trans. on Power Systems 9(2), 876–883 (1994)CrossRefGoogle Scholar
  33. 33.
    Irisarri, G.D., Wang, X., Tong, J., Mokhtari, S.: Maximum loadability of power systems using interior point nonlinear optimisation method. IEEE Trans. on Power Systems 12(1), 167–172 (1997)CrossRefGoogle Scholar
  34. 34.
    Wei, H., Sasaki, H., Yokoyama, R.: An interior point nonlinear programming for optimal power flow problems within a novel data structure. IEEE Trans. on Power Systems 13(3), 870–877 (1998)CrossRefGoogle Scholar
  35. 35.
    Torres, G.L., Quintana, V.H.: An interior point method for non-linear optimal power flow using voltage rectangular coordinates. IEEE Transactions on Power Systems 13(4), 1211–1218 (1998)CrossRefGoogle Scholar
  36. 36.
    Zhang, X.P., Petoussis, S.G., Godfrey, K.R.: Novel nonlinear interior point optimal power flow (OPF) method based on current mismatch formulation. IEE Proceedings– Generation, Transmission & Distribution 152(6), 795–805 (2005)CrossRefGoogle Scholar
  37. 37.
    Zhang, X.P., Petoussis, S.G., Godfrey, K.R.: Novel nonlinear interior point optimal power flow (OPF) method based on current mismatch formulation. IEE Proceedings– Generation, Transmission & Distribution (2005) (to appear)Google Scholar
  38. 38.
    El-Bakry, S., Tapia, R.A., Tsuchiya, T., Zhang, Y.: On the formulation and theory of the Newton interior-point method for nonlinear programming. Journal of Optimisation Theory and Applications 89(3), 507–541 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    La Scala, M., Trovato, M., Antonelli, C.: On-line dynamic preventive control: An algorithm for transient security constraints. IEEE Transactions on Power Systems 13(2), 601–610 (1998)CrossRefGoogle Scholar
  40. 40.
    Gan, D., Thomas, R.J., Zimmermann, R.D.: Stability constrained optimal power flow. IEEE Transactions on Power Systems 15(2), 535–540 (2000)CrossRefGoogle Scholar
  41. 41.
    Chen, L., Tada, Y., et al.: Optimal operation solutions of power systems with transient stability constraints. IEEE Transactions on Circuit and Systems – I: Fundamental Theory and Applications 48(3), 327–339 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Yue, Y., Kubokawa, J., Sasaki, H.: A solution of optimal power flow with multi-continency transient stability constraints. IEEE Transactions on Power Systems 18(3), 1094–1102 (2003)CrossRefGoogle Scholar
  43. 43.
    Rosehart, W., Canizares, C., Quintana, V.H.: Optimal power flow incorporating voltage collapse constraints. In: Proceedings of the 1999 IEEE/PES Summer Meeting, Edmonton, Alberta, pp. 820–825 (July 1999)Google Scholar
  44. 44.
    Hingorani, N.G., Gyugyi, L.: Understanding FACTS – concepts and technology of flexible ac transmission systems. IEEE Press, New York (2000)Google Scholar
  45. 45.
    Handschin, E., Lehmkoester, C.: Optimal power flow for deregulated systems with FACTS-Devices. In: 13th PSCC, Trondheim, Norway, pp. 1270–1276 (1999)Google Scholar
  46. 46.
    Lehmkoster, C.: Security constrained optimal power flow for an economical operation of FACTS-devices in liberalized energy markets. IEEE Transactions on Power Delivery 17(2), 603–608 (2002)CrossRefGoogle Scholar
  47. 47.
    Acha, E., Ambriz-Perez, H.: H FACTS devices modelling in optimal power flow using Newton’s method. In: 13th PSCC, Trondheim, Norway, pp. 1277–1284 (1999)Google Scholar
  48. 48.
    Zhang, X.P., Handschin, E.: Advanced implementation of UPFC in a nonlinear interior point OPF. IEE Proceedings– Generation, Transmission & Distribution 148(3), 489–496 (2001)CrossRefGoogle Scholar
  49. 49.
    Zhang, X.P., Handschin, E.: Optimal power flow control by converter based FACTS controllers. In: 7th International Conference on AC-DC Power Transmission, November 28-30 (2001)Google Scholar
  50. 50.
    Fardanesh, B., Henderson, M., Shperling, B., Zelingher, S., Gyugyi, L., Schauder, C., Lam, B., Mounford, J., Adapa, R., Edris, A.: Convertible static compensator: application to the New York transmission system. In: CIGRE 14-103, Paris, France (September 1998)Google Scholar
  51. 51.
    Fardanesh, B., Shperling, B., Uzunovic, E., Zelingher, S.: Multi-converter FACTS devices: the generalized unified power flow controller (GUPFC). In: Proceedings of IEEE 2000 PES Summer Meeting, Seattle, USA (2000)Google Scholar
  52. 52.
    Zhang, X.P., Handschin, E., Yao, M.M.: Modeling of the generalized unified power flow controller in a nonlinear interior point OPF. IEEE Trans. on Power Systems 16(3), 367–373 (2001)CrossRefGoogle Scholar
  53. 53.
    Zhang, X.P.: Modelling of the interline power flow controller and generalized unified power flow controller in Newton power flow. IEE Proc. - Generation, Trans-mission and Distribution 150(3), 268–274 (2003)CrossRefGoogle Scholar
  54. 54.
    Zhang, X.P.: Multiterminal voltage-sourced converter based HVDC models for power flow analysis. IEEE Transactions on Power Systems 18(4), 1877–1884 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xiao-Ping Zhang
    • 1
  • Christian Rehtanz
    • 2
  • Bikash Pal
    • 3
  1. 1.University of BirminghamBirminghamUK
  2. 2.TU Dortmund UniversityDortmundGermany
  3. 3.Imperial College LondonLondonUK

Personalised recommendations