Power Electronic Control for Wind Generation Systems

  • Xiao-Ping Zhang
  • Christian Rehtanz
  • Bikash Pal
Part of the Power Systems book series (POWSYS)


Wind energy has mushroomed into a mature and booming global green business while generation costs have fallen dramatically. Modern wind turbine technologies have been improved significantly in their power rating, efficiency and reliability. Global wind energy capacity is up to 196.6 GW at the end of 2010. This Chapter covers

∙ mathematical models for wind turbines such as wind turbine (WT) with doubly fed induction generator (DFIG) and WT with direct-drive permanent magnet generator (DDPMG);

∙ small signal stability analysis and nonlinear control using power electronic back-to-back converters, which are very similar to those of UPFC and VSC HVDC;

∙ dynamic equivalent modeling of wind farms;

∙ and wind farm interconnection with power grid via VSC HVDC link.


Wind Turbine Wind Farm Power System Stability Offshore Wind Farm Grid Side Converter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eriksen, P.B., Ackermann, T., Abildgaard, H., et al.: System operation with high wind penetration. IEEE Power & Energy Magazine 3(6), 65–74 (2005)Google Scholar
  2. 2.
    Muller, S., Deicke, M., De Doncker, R.W.: Doubly fed induction generator systems for wind turbines. IEEE Industry Application Magazine 8(3), 26–33 (2002)CrossRefGoogle Scholar
  3. 3.
    Westlake, A.J.G., Bumby, J.R., Spooner, E.: Damping the power-angle oscillations of a permanent-magnet synchronous generator with particular reference to Wind Turbine Application. IEE Proc. Electr. Power Appl. 143(3), 269–280 (1996)CrossRefGoogle Scholar
  4. 4.
    V164-7.0 MW turbine launched, Vestas News (March 30, 2011),
  5. 5.
    Upwind - Design limits and solutions for very large wind turbine. FP6 EU Project Report (March 2011)Google Scholar
  6. 6.
    Kundur, P.: Power system stability and control. McGraw Hill, New York (1994)Google Scholar
  7. 7.
    Verghese, G.C., Perez-Arriaga, I.J., Schweppe, F.C.: Selective modal analysis with applications to electric power systems, Part I: Heuristic introduction Part II: The dynamic stability problem. IEEE Transactions on Power Apparatus and Systems 101(9), 3117–3134 (1982)CrossRefGoogle Scholar
  8. 8.
    Akhmatov, V.: Variable-speed wind turbine with doubly-fed induction generators –Part I: modelling in dynamic simulation tools. Wind Energy 26(2), 85–108 (2002)CrossRefGoogle Scholar
  9. 9.
    Ledesma, P., Usaola, J.: Doubly fed induction generator model for transient stability analysis. IEEE Trans. on Energy Conversion 20(2), 388–397 (2005)CrossRefGoogle Scholar
  10. 10.
    Lopez, J., Sanchis, P., Roboam, X., et al.: Dynamic behavior of the doubly fed induction generator during three-phase voltage dips. IEEE Trans. on Energy Conversion 22(3), 709–717 (2007)CrossRefGoogle Scholar
  11. 11.
    Pertersson, A., Thiringer, T., Harnefors, L., et al.: Modeling and experimental verification of grid interaction of a DFIG wind turbine. IEEE Trans. on Energy Conversion 20(4), 878–886 (2005)CrossRefGoogle Scholar
  12. 12.
    Wu, F., Zhang, X.P., Godfrey, K., Ju, P.: Small signal analysis and optimal control of a wind turbine with doubly fed induction generator. IET - Generation, Transmission and Distribution 1(5), 751–760 (2007)CrossRefGoogle Scholar
  13. 13.
    Mullance, A., O’Malley, M.: The inertial response of induction-machine-based wind turbine. IEEE Trans. on Power Systems 20(3), 1496–1503 (2005)CrossRefGoogle Scholar
  14. 14.
    Morren, J., de Haan, S.W.H.: Short-circuit current of wind turbine with doubly fed induction generator. IEEE Trans. on Energy Conversion 22(1), 174–180 (2007)CrossRefGoogle Scholar
  15. 15.
    Petru, T., Thiringer, T.: Modeling of wind turbines for power system studies. IEEE Trans. on Power Systems 17(4), 1132–1139 (2002)CrossRefGoogle Scholar
  16. 16.
    Ekanayake, J.B., Holdsworth, L., Jenkins, N.: Comparison of 5th order and 3rd order machine models for doubly fed induction generator (DFIG) wind turbines. Electric Power Systems Research 67(3), 207–215 (2003)CrossRefGoogle Scholar
  17. 17.
    Lei, Y., Mullane, A., Lightbody, G., et al.: Modeling of the wind turbine with a doubly fed induction generator for grid integration studies. IEEE Trans. on Energy Conversion 21(1), 257–264 (2006)CrossRefGoogle Scholar
  18. 18.
    Slootweg, J.G., Polinder, H., Kling, W.L.: Reduced-order modelling of wind turbine. In: Ackermann, T. (ed.) Wind Power in Power Systems, pp. 555–585, Wiley, England (2005)Google Scholar
  19. 19.
    Mei, F., Pal, B.C.: Modelling and small-signal analysis of a grid connected doublyfed induction generator. In: Proceeding of IEEE PES General Meeting 2005, San Francisco, USA, June 12-16 (2005)Google Scholar
  20. 20.
    Slootweg, J.G., Kling, W.L.: Aggregated modelling of wind parks in power system dynamics simulations. In: Proceeding of 2003 IEEE Power Tech. Conference, Bologna, Italy, June 23-26 (2003)Google Scholar
  21. 21.
    Akhmatov, V., Knudsen, H.: An aggregate model of a grid-connected, large-scale, offshore wind farm for power stability investigations – importance of windmill mechanical system. Electrical Power and Energy Systems 24(9), 709–717 (2002)CrossRefGoogle Scholar
  22. 22.
    Yamamoto, M., Motoyoshi, O.: Active and reactive power control for doubly-fed wound rotor induction generator. IEEE Trans. on Power Electronics 6(4), 624–629 (1991)CrossRefGoogle Scholar
  23. 23.
    Pena, R., Clare, J.C., Asher, G.M.: Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proc. Electr. Power Appl. 143(3), 231–241 (1996)CrossRefGoogle Scholar
  24. 24.
    Hansen, A.D., Sorensen, P., Iov, F., et al.: Control of variable speed wind turbines with doubly-fed induction generators. Wind Engineering 28(4), 411–434 (2004)CrossRefGoogle Scholar
  25. 25.
    Akhmatov, V.: Variable-speed wind turbines with doubly-fed induction generators Part III: model with the back-to-back converters. Wind Engineering 27(2), 79–91 (2003)CrossRefGoogle Scholar
  26. 26.
    Akhmatov, V.: Variable-speed wind turbines with doubly-fed induction generators Part IV: uninterrupted operation features at grid faults with converter control coordination. Wind Engineering 27(6), 519–529 (2003)CrossRefGoogle Scholar
  27. 27.
    Tapia, G., Tapia, A.: Wind generation optimisation algorithm for a doubly fed induction generator. IEE Proc. Gener. Transm. Distrib. 152(2), 253–263 (2005)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kayikci, M., Milanovic, J.V.: Reactive power control strategies for DFIG-based plants. IEEE Trans. on Energy Conversion 22(2), 389–396 (2007)CrossRefGoogle Scholar
  29. 29.
    Hughes, F., Anaya-Lara, O., Jenkins, N., et al.: Control of DFIG-based wind generation for power network support. IEEE Trans. on Power Systems 20(4), 1958–1966 (2005)CrossRefGoogle Scholar
  30. 30.
    Brekken, T.K., Mohan, N.: Control of a doubly fed induction wind generator under unbalanced grid voltage conditions. IEEE Trans. on Energy Conversion 22(1), 129–135 (2007)CrossRefGoogle Scholar
  31. 31.
    Morren, J., de Haan, S.W.H.: Ride through of wind turbines with doubly fed induction generator during a voltage dip. IEEE Trans. on Energy Conversion 20(2), 435–441 (2005)CrossRefGoogle Scholar
  32. 32.
    Zhi, D., Xu, L.: Direct power control of DFIG with constant switching frequency and improvement transient performance. IEEE Trans. on Energy Conversion 22(1), 110–118 (2007)CrossRefGoogle Scholar
  33. 33.
    Xiang, D., Ran, L., Tavner, P.J., et al.: Control of a doubly fed induction generator in a wind turbine during grid fault ride-through. IEEE Trans. on Energy Conversion 21(3), 652–662 (2006)CrossRefGoogle Scholar
  34. 34.
    Ullah, N.R., Thiringer, T.: Variable speed wind turbine for power system stability enhancement. IEEE Trans. on Energy Conversion 22(1), 52–60 (2007)CrossRefGoogle Scholar
  35. 35.
    Nunes, M.V.A., Lopes, J.A.P., Zurn, H.H., et al.: Influence of the variable-speed wind generators in transient stability margin of the conventional generators integrated in electrical grids. IEEE Trans. on Energy Conversion 19(4), 692–701 (2004)CrossRefGoogle Scholar
  36. 36.
    Kundur, P., Paserba, J., Ajjarapu, V., et al.: Definition and classification of power system stability. IEEE Trans. on Power Systems 19(2), 1387–1401 (2004)Google Scholar
  37. 37.
    Muljadi, E., Butterfield, C.P., Parsons, B., et al.: Effect of variable speed wind turbine generator on stability of a week grid. IEEE Trans. on Energy Conversion 22(1), 29–36 (2007)CrossRefGoogle Scholar
  38. 38.
    Slootweg, J.G., Kling, W.L.: The impact of large scale wind power generation on power system oscillations. Electrical Power System Research 67(1), 9–20 (2003)CrossRefGoogle Scholar
  39. 39.
    Lalor, G., Mullance, A., O’Malley, M.: Frequency control and wind turbine technologies. IEEE Trans. on Power Systems 20(4), 1905–1913 (2005)CrossRefGoogle Scholar
  40. 40.
    Akhmatov, V., Nielsen, A.H., Pedersen, J.K., et al.: Variable-speed wind turbine with multi-pole synchronous permanent magnet generators. Part I: modelling in dynamic simulation tools. Wind Engineering 27(6), 531–548 (2003)Google Scholar
  41. 41.
    Chen, Z., Spooner, E.: Grid interface options for variable-speed, permanent-magnet generators. IEE Proc. Electr. Power Appl. 145(4), 273–283 (1998)CrossRefGoogle Scholar
  42. 42.
    Tan, K., Islam, S.: Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensor. IEEE Trans. on Energy Conversion 19(2), 392–399 (2004)CrossRefGoogle Scholar
  43. 43.
    Chinchilla, M., Arnaltes, S., Burgos, J.C.: Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid. IEEE Trans. on Energy Conversion 21(1), 130–135 (2006)CrossRefGoogle Scholar
  44. 44.
    Wu, F., Zhang, X.P., Ju, P.: Small signal stability analysis and control of the wind turbine with the direct-drive permanent magnet generator integrated to the power grid. Journal of Electric Power Systems Research 79(12), 1661–1667 (2009)CrossRefGoogle Scholar
  45. 45.
    Cheng, D., Tarn, T.J., Isidori, A.: Global external linearization of nonlinear system via feedback. IEEE Trans. on AC 30(8), 808–811 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Lu, Q., Sun, Y., Mei, S.: Nonlinear Control System And Power System Dynamics. Kluwer Academic Publishers, London (2001)zbMATHGoogle Scholar
  47. 47.
    Guo, G., Wang, Y., Hill, D.J.: Nonlinear output stabilization control for multimachine power system. IEEE Trans. on Circuits and systems, Part I 47(1), 46–53 (2000)CrossRefGoogle Scholar
  48. 48.
    Wu, F., Zhang, X.P., Ju, P., Sterling, M.J.H.: Decentralized nonlinear control of wind turbine with doubly fed induction generator. IEEE Transactions on Power Systems 23(2), 613–621 (2008)CrossRefGoogle Scholar
  49. 49.
    Sun, C., Zhao, Z., Sun, Y., et al.: Design of nonlinear robust excitation control for multimachine power systems. IEE Proc. Gener. Distrib. 143(3), 253–257 (1996)CrossRefGoogle Scholar
  50. 50.
    Jin, M.J., Hu, W., Liu, F., et al.: Nonlinear co-ordinated control of excitation and governor for hydraulic power plant. IEE Proc. Gener. Transm. Distrib. 152(4), 544–548 (2005)CrossRefGoogle Scholar
  51. 51.
    Jung, J., Lim, S., Nam, K.: A feedback linearizing control scheme for a PWM converter-inverter having a very small DC-Link capacitor. IEEE Transactions on Industry Application 35(5), 1124–1131 (1999)CrossRefGoogle Scholar
  52. 52.
    Lee, D.C., Lee, G.M., Lee, K.D.: DC-Bus voltage control of three-phase AC/DC PWM converters using feedback linearization. IEEE Trans. on Industry Application 36(3), 826–833 (2000)CrossRefGoogle Scholar
  53. 53.
    Mullane, A., Lightbody, G., Yacamini, R.: Wind-turbine fault ride-through enhancement. IEEE Trans. on Power Systems 20(4), 1929–1937 (2005)CrossRefGoogle Scholar
  54. 54.
    Muljadi, E., Butterfield, C.P.: Equivalencing the collector systems of a large wind power plant. In: Proceedings of the IEEE PES General Meeting, Montreal, Canada, June 18-22 (2006)Google Scholar
  55. 55.
    Germond, A.J., Podmore, R.: Dynamic aggregation of generating unit models. IEEE Transactions on Power Apparatus and Systems  PAS-97(4), 1060–1069 (1978)Google Scholar
  56. 56.
    Marquardt, R., Lesnicar, A.: New concept for high voltage-modular multilevel converter. In: The 2004 IEEE Power Electronics Specialists Conference and Exhibition (PESC), Aachen, Germany, June 20-25 (2004)Google Scholar
  57. 57.
    Westerweller, T., Friedrich, K., Armonies, U., Orini, A., Parquet, D., When, S.: Trans Bay Cable – world’s first HVDC system using multilevel voltage-sourced converter, CIGRÉ Paper B4-101, Paris (2010)Google Scholar
  58. 58.
    Jacobson, B., Karlsson, P., Asplund, G., Harnefors, L., Jonsson, T.: VSC-HVDC transmission with cascaded two-level converters. CIGRÉ Paper B4-110, Cigre (2010)Google Scholar
  59. 59.
    Davidson, C.C., Trainer, D.R.: Innovative concepts for hybrid multi-level converters for HVDC power transmission. In: IET AC DC Power Transmission Conference, London, UK, October 19-22 (2010)Google Scholar
  60. 60.
    Zhang, X.P.: Multiterminal voltage-sourced converter based HVDC models for power flow analysis. IEEE Transactions on Power Systems 18(4), 1877–1884 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xiao-Ping Zhang
    • 1
  • Christian Rehtanz
    • 2
  • Bikash Pal
    • 3
  1. 1.University of BirminghamBirminghamUK
  2. 2.TU Dortmund UniversityDortmundGermany
  3. 3.Imperial College LondonLondonUK

Personalised recommendations