Advertisement

Power System Stability Control Using FACTS with Multiple Operating Points

  • Xiao-Ping Zhang
  • Christian Rehtanz
  • Bikash Pal
Part of the Power Systems book series (POWSYS)

Abstract

Power systems may operate on several operating conditions including post-fault operating conditions where it is challenging to design a FACTS damping controller that can achieve satisfactory performance over several operating conditions. When the nonlinear power system model is linearized around these operating conditions, a set of linearized state equations can formulate the multi-model system. So in principle the control design for the system with several operating points is to design a common controller for the multi-model system. Basically the output feedback problem of a multi-model system can be described by the nonlinear matrix inequalities (NMI). In the previous chapter, LMI approaches have been proposed to solve the damping control design on the nominal model (or single model) through suitable parameterization and transformation of the original NMI into the LMI problems. However, the LMI approaches and associated parameterization and transformation techniques are not applicable to the NMI for the multi-model system: In this Chapter, a two-step LMI based approach is proposed to design an output feedback controller for a multi-model system where the pole placement of the closed-loop system is considered. Then the proposed design approach is extended to H 2 and H  ∞  performances.

Keywords

Linear Matrix Inequality State Feedback Controller Pole Placement Output Feedback Controller Linear Matrix Inequality Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kundur, P.: Power System Stability and Control. McGraw-Hill (1994)Google Scholar
  2. 2.
    Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics, SIAM (1994)Google Scholar
  3. 3.
    Rao, P.S., Sen, I.: Robust pole placement stabilizer design using linear matrix inequalities. IEEE Transactions on Power Systems 15(1), 313–319 (2000)CrossRefGoogle Scholar
  4. 4.
    Werner, H., Korba, P., Yang, T.C.: Robust tuning of power system stabilizers using LMI-techniques. IEEE Transactions on Control Systems Technology 11(1), 147–152 (2003)CrossRefGoogle Scholar
  5. 5.
    Shiau, J.-K., Taranto, G.N., Chow, J.H., Boukarim, G.: Power swing damping controller design using an iterative linear matrix inequality algorithm. IEEE Transactions on Control Systems Technology 7(3), 371–381 (1999)CrossRefGoogle Scholar
  6. 6.
    Pal, B.C.: Robust damping of interarea oscillations with unified power-flow controller. IEEE Proceedings: Generation, Transmission and Distribution 149(6), 733–738 (2002)CrossRefGoogle Scholar
  7. 7.
    Pal, B.C., Coonick, A.H., Jaimoukha, I.M., El-Zobaidi, H.: A linear matrix inequality approach to robust damping control design in power systems with superconducting magnetic energy storage device. IEEE Transactions on Power Systems 15(1), 356–362 (2000)CrossRefGoogle Scholar
  8. 8.
    Farsangi, M.M., Song, Y.H., Tan, M.: Multi-objective design of damping controllers of FACTS devices via mixed H2/H∞ with regional pole placement. International Journal of Electrical Power and Energy System 25(5), 339–346 (2003)CrossRefGoogle Scholar
  9. 9.
    Chilali, M., Gahinet, P.: H infinity design with pole placement constraints: an LMI approach. IEEE Transactions on Automatic Control 41(3), 358–367 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Iwasaki, T., Skelton, R.E.: All controllers for the general H∞ control problem: LMI existence conditions and state space formulas. Automatica 30(8), 1307–1317 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Khargonekar, P.P., Rotea, M.A.: Mixed H2/H∞ control: A convex optimization approach. IEEE Transactions on Automatic Control 36(7), 824–837 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Scherer, C., Gahinet, P., Chilali, M.: Multiobjective output-feedback control via LMI optimization. IEEE Transactions on Automatic Control 42(7), 896–911 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Gahinet, P., Nemirovski, A., Laub, A.J., Chilali, M.: LMI Control ToolboxUser’s Guide. The Math Works, Inc. (1995)Google Scholar
  14. 14.
    VanAntwerp, J.G., Braatz, R.D.: Tutorial on linear and bilinear matrix inequalities. Journal of Process Control 10(4), 363–385 (2000)CrossRefGoogle Scholar
  15. 15.
    Larsen, E.V., Sanchez-Gasca, J.J., Chow, J.H.: Concepts for design of FACTS controllers to damp power swings. IEEE Transactions on Power Systems 10(2), 948–956 (1995)CrossRefGoogle Scholar
  16. 16.
    Chow, J.H., Sanchez-Gasca, J.J., Ren, H., Wang, S.: Power system damping controller design using multiple input signals. IEEE Control Systems Magazine 20(4), 82–90 (2000)CrossRefGoogle Scholar
  17. 17.
    Kanev, S., Scherer, C., Verhaegen, M., De Schutter, B.: Robust output-feedback controller design via local BMI optimization. Automatica 40(7), 1115–1127 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Klein, M., Rogers, G.J., Kundur, P.: A fundamental study of inter-area oscillations in power systems. IEEE Transactions on Power Systems 6(3), 914–921 (1991)CrossRefGoogle Scholar
  19. 19.
    Taranto, G.N., Chow, J.H.: Robust frequency domain optimization technique for tuning series compensation damping controllers. IEEE Transactions on Power Systems 10(3), 1219–1225 (1995)CrossRefGoogle Scholar
  20. 20.
    De Oliveira, M.C., Geromel, J.C., Bernussou, J.: Design of dynamic output feedback decentralized controllers via a separation procedure. Int. J. Control 73(5), 371–381 (2000)zbMATHCrossRefGoogle Scholar
  21. 21.
    Ramos, R.A., Alberto, L.F.C., Bretas, N.G.: A new methodology for the coordinated design of robust decentralized power system damping controllers. IEEE Transactions on Power Systems 19(1), 444–454 (2004)CrossRefGoogle Scholar
  22. 22.
    Ramos, R.A., Martins, A.C.P., Bretas, N.G.: An improved methodology for the design of power system damping controllers. IEEE Transactions on Power Systems 20(4), 1938–1945 (2005)CrossRefGoogle Scholar
  23. 23.
    Xue, C.-F., Zhang, X.-P., Godfrey, K.R.: Design of STATCOM Damping Control with Multiple Operating Points: A Multi-model LMI Approach. IEEE Proc. - Generation, Transmission and Distribution 153(4), 375–382 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xiao-Ping Zhang
    • 1
  • Christian Rehtanz
    • 2
  • Bikash Pal
    • 3
  1. 1.University of BirminghamBirminghamUK
  2. 2.TU Dortmund UniversityDortmundGermany
  3. 3.Imperial College LondonLondonUK

Personalised recommendations