Abstract
Background: Early hemodynamic assessment of global parameters in critically ill patients fails to provide adequate information on tissue perfusion. It requires invasive monitoring and may represent a late intervention initiated mainly in the intensive care unit. Noninvasive monitoring of peripheral perfusion can be a complementary approach that allows very early application throughout the hospital. In addition, as peripheral tissues are sensitive to alterations in perfusion, monitoring of the periphery could be an early marker of tissue hypoperfusion. This review discusses noninvasive methods for monitoring perfusion in peripheral tissues based on clinical signs, body temperature gradient, optical monitoring, transcutaneous oximetry, and sublingual capnometry. Discussion: Clinical signs of poor peripheral perfusion consist of a cold, pale, clammy, and mottled skin, associated with an increase in capillary refill time. The temperature gradients peripheral-to-ambient, central-to-peripheral and forearm-to-fingertip skin are validated methods to estimate dynamic variations in skin blood flow. Commonly used optical methods for peripheral monitoring are perfusion index, near-infrared spectroscopy, laser Doppler flowmetry and orthogonal polarization spectroscopy. Continuous noninvasive transcutaneous measurement of oxygen and carbon dioxide tensions can be used to estimate cutaneous blood flow. Sublingual capnometry is a noninvasive alternative for gastric tonometry.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bakker J, Coffernils M, Leon M, Gris P, Vincent J-L (1991) Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest 99:956–962
De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104
Rady MY, Rivers EP, Nowak RM (1996) Resuscitation of the critically ill in the ED: responses of blood pressure, heart rate, shock index, central venous oxygen saturation, and lactate. Am J Emerg Med 14:218–225
Shoemaker WC, Appel PL, Kram HB, Nathan RC, Thompson JL (1988) Multicomponent noninvasive physiologic monitoring of circulatory function. Crit Care Med 16:482–490
Siegemund M, van Bommel J, Ince C (1999) Assessment of regional tissue oxygenation. Intensive Care Med 25:1044–1060
Tibby SM, Hatherill M, Murdoch IA (1999) Capillary refill and core-peripheral temperature gap as indicators of haemodynamic status in paediatric intensive care patients. Arch Dis Child 80:163–166
Bailey JM, Levy JH, Kopel MA, Tobia V, Grabenkort WR (1990) Relationship between clinical evaluation of peripheral perfusion and global hemodynamics in adults after cardiac surgery. Crit Care Med 18:1353–1356
Schriger DL, Baraff L (1988) Defining normal capillary refill: variation with age, sex, and temperature. Ann Emerg Med 17:932–935
Kaplan LJ, McPartland K, Santora TA, Trooskin SZ (2001) Start with a subjective assessment of skin temperature to identify hypoperfusion in intensive care unit patients. J Trauma 50:620–627
Schriger DL, Baraff L (1991) Capillary refill: is it a useful predictor of hypo- volemic states? Ann Emerg Med 20:601–605
Steiner MJ, DeWalt DA, Byerley JS (2004) Is this child dehydrated? JAMA 291:2746–2754
Champion HR, Sacco WJ, Carnazzo AJ, Copes W, Fouty WJ (1981) Trauma score. Crit Care Med 9:672–676
Hasdai D, Holmes DR Jr, Califf RM, Thompson TD, Hochman JS, Pfisterer M, Topol EJ (1999) Cardiogenic shock complicating acute myocardial infarction: predictors of death. GUSTOInvestigators. Global Utilization of Streptokinase and Tissue-Plasminogen Activator for Occluded Coronary Arteries. Am Heart J 138:21–31
McGee S, Abernethy WB, III, Simel DL (1999) Is this patient hypovolemic? JAMA 281:1022–1029
Joly HR, Weil MH (1969) Temperature of the great toe as an indication of the severity of shock. Circulation 39:131–138
Ibsen B (1967) Treatment of shock with vasodilators measuring temperature of the great toe: ten years experience in 150 cases. Dis Chest 52:425
Guyton AC (1996) Body temperature, temperature regulation, and fever. In: Guyton AC, Hall JE (eds) Textbook of medical physiology. Saunders, Philadelphia, pp 911–922
Ross BA, Brock L, Aynsley-Green A (1969) Observations on central and peripheral temperatures in the understanding and management of shock. Br J Surg 56:877?882
Curley FJ, Smyrnios NA (2003) Routine monitoring of critically ill patients. In: Irwin RS, Cerra FB, Rippe JM (eds) Intensive care medicine. Lippincott Williams & Wilkins, New York, pp 250–270
Ibsen B (1966) Further observations in the use of air-conditioned rooms in the treatment of hyperthermia and shock. Acta Anaesthesiol Scand Suppl 23:565570
Rubinstein EH, Sessler DI (1990) Skin- surface temperature gradients correlate with fingertip blood flow in humans. Anesthesiology 73:541–545
Sessler DI (2003) Skin-temperature gradients are a validated measure of fingertip perfusion. Eur J Appl Physiol 89:401–402
House JR, Tipton MJ (2002) Using skin temperature gradients or skin heat flux measurements to determine thresholds of vasoconstriction and vasodilatation. Eur J Appl Physiol 88:141–145
Brock L, Skinner JM, Manders JT (1975) Observations on peripheral and central temperatures with particular reference to the occurrence of vasoconstriction. Br J Surg 62:589–595
Ruiz CE, Weil MH, Carlson RW (1979) Treatment of circulatory shock with dopamine. Studies on survival. JAMA 242:165–168
Ryan CA, Soder CM (1989) Relationship between core/peripheral temperature gradient and central hemodynamics in children after open heart surgery. Crit Care Med 17:638–640
Vincent JL, Moraine JJ, van der LP (1988) Toe temperature versus trans- cutaneous oxygen tension monitoring during acute circulatory failure. Intensive Care Med 14:64–68
Henning RJ, Wiener F, Valdes S, Weil MH (1979) Measurement of toe temperature for assessing the severity of acute circulatory failure. Surg Gynecol Obstet 149:1–7
Murdoch IA, Qureshi SA, Mitchell A, Huggon IC (1993) Core-peripheral temperature gradient in children: does it reflect clinically important changes in circulatory haemodynamics? Acta Pae- diatr 82:773–776
Butt W, Shann F (1991) Core-peripheral temperature gradient does not predict cardiac output or systemic vascular resistance in children. Anaesth Intensive Care 19:84–87
Woods I, Wilkins RG, Edwards JD, Martin PD, Faragher EB (1987) Danger of using core/peripheral temperature gradient as a guide to therapy in shock. Crit Care Med 15:850–852
Sessler DI (2000) Perioperative heat balance. Anesthesiology 92:578–596
Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377
Vincent JL (1996) End-points of resuscitation: arterial blood pressure, oxygen delivery, blood lactate, or..? Intensive Care Med 22:3–5
Flewelling R (2000) Noninvasive optical monitoring. In: Bronzino JD (ed) The biomedical engineering handbook. Springer, Berlin Heidelberg New York, pp 1–10
Lima AP, Beelen P, Bakker J (2002) Use of a peripheral perfusion index derived from the pulse oximetry signal as a noninvasive indicator of perfusion. Crit Care Med 30:1210–1213
Kurz A, Xiong J, Sessler DI, Dechert M, Noyes K, Belani K (1995) Desflu- rane reduces the gain of thermoregula- tory arteriovenous shunt vasoconstriction in humans. Anesthesiology 83:1212–1219
Lima A, Bakker J (2004) The peripheral perfusion index in reactive hyperemia in critically ill patients. Crit Care 8:S27-P53
De Felice C, Latini G, Vacca P, Kopotic RJ (2002) The pulse oximeter perfusion index as a predictor for high illness severity in neonates. Eur J Pediatr 161:561–562
Van Beekvelt MC, Colier WN, Wevers RA, Van Engelen BG (2001) Performance of near-infrared spectroscopy in measuring local O (2) consumption and blood flow in skeletal muscle. J Appl Physiol 90:511–519
De Blasi RA, Ferrari M, Natali A, Conti G, Mega A, Gasparetto A (1994) Noninvasive measurement of forearm blood flow and oxygen consumption by near- infrared spectroscopy. J Appl Physiol 76:1388–1393
Edwards AD, Richardson C, van der ZP, Elwell C, Wyatt JS, Cope M, Delpy DT, Reynolds EO (1993) Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy. J Appl Physiol 75:1884–1889
Taylor DE, Simonson SG (1996) Use of near-infrared spectroscopy to monitor tissue oxygenation. New Horiz 4:420425
Rhee P, Langdale L, Mock C, Gen- tilello LM (1997) Near-infrared spec- troscopy: continuous measurement of cytochrome oxidation during hemor- rhagic shock. Crit Care Med 25:166170
Puyana JC, Soller BR, Zhang S, Heard SO (1999) Continuous measurement of gut pH with near-infrared spectroscopy during hemorrhagic shock. J Trauma 46:9–15
Beilman GJ, Myers D, Cerra FB, Lazaron V, Dahms RA, Conroy MJ, Hammer BE (2001) Near-infrared and nuclear magnetic resonance spectro- scopic assessment of tissue energetics in an isolated, perfused canine hind limb model of dysoxia. Shock 15:392397
Crookes BA, Cohn SM, Burton EA, Nelson J, Proctor KG (2004) Noninvasive muscle oxygenation to guide fluid resuscitation after traumatic shock. Surgery 135:662–670
McKinley BA, Marvin RG, Cocanour CS, Moore FA (2000) Tissue hemoglobin O2 saturation during resuscitation of traumatic shock monitored using near infrared spectrometry. J Trauma 48:637–642
Cairns CB, Moore FA, Haenel JB, Gallea BL, Ortner JP, Rose SJ, Moore EE (1997) Evidence for early supply independent mitochondrial dysfunction in patients developing multiple organ failure after trauma. J Trauma 42:532536
Muellner T, Nikolic A, Schramm W, Vecsei V (1999) New instrument that uses near-infrared spectroscopy for the monitoring of human muscle oxygenation. J Trauma 46:1082–1084
Arbabi S, Brundage SI, Gentilello LM (1999) Near-infrared spectroscopy: a potential method for continuous, trans- cutaneous monitoring for compartmen- tal syndrome in critically injured patients. J Trauma 47:829–833
Giannotti G, Cohn SM, Brown M, Varela JE, McKenney MG, Wiseberg JA (2000) Utility of near-infrared spectroscopy in the diagnosis of lower extremity compartment syndrome. J Trauma 48:396–399
Girardis M, Rinaldi L, Busani S, Flore I, Mauro S, Pasetto A (2003) Muscle perfusion and oxygen consumption by near-infrared spectroscopy in septic- shock and non-septic-shock patients. Intensive Care Med 29:1173–1176
Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K, Nadeau RG (1999) Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med 5:1209–1212
De Backer D, Dubois MJ, Creteur J, Vincent J-L (2001) Effects of dobuta- mine on microcirculatory alterations in patients with septic shock. Intensive Care Med 27:S237
Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360:13951396
De Backer D, Creteur J, Dubois MJ, Sakr Y, Vincent JL (2004) Microvas- cular alterations in patients with acute severe heart failure and cardiogenic shock. Am Heart J 147:91–99
Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831
Jin X, Weil MH, Sun S, Tang W, Bisera J, Mason EJ (1998) Decreases in organ blood flows associated with increases in sublingual PCO2 during hemorrhagic shock. J Appl Physiol 85:2360–2364
Schabauer AM, Rooke TW (1994) Cutaneous laser Doppler flowmetry: applications and findings. Mayo Clin Proc 69:564–574
Farkas K, Fabian E, Kolossvary E, Jarai Z, Farsang C (2003) Noninvasive assessment of endothelial dysfunction in essential hypertension: comparison of the forearm microvascular reactivity with flow-mediated dilatation of the brachial artery. Int J Angiol 12:224–228
Koller A, Kaley G (1990) Role of en- dothelium in reactive dilation of skeletal muscle arterioles. Am J Physiol 259:H1313-H1316
Morris SJ, Shore AC, Tooke JE (1995) Responses of the skin microcirculation to acetylcholine and sodium nitroprus- side in patients with NIDDM. Dia- betologia 38:1337–1344
Warren JB (1994) Nitric oxide and human skin blood flow responses to ace- tylcholine and ultraviolet light. FASEB J 8:247–251
Blaauw J, Graaff R, van Pampus MG, van Doormaal JJ, Smit AJ, Rakhorst G, Aarnoudse JG (2005) Abnormal endo- thelium-dependent microvascular reactivity in recently preeclamptic women. Obstet Gynecol 105:626–632
Hartl WH, Gunther B, Inthorn D, Heberer G (1988) Reactive hyperemia in patients with septic conditions. Surgery 103:440–444
Young JD, Cameron EM (1995) Dynamics of skin blood flow in human sepsis. Intensive Care Med 21:669–674
Sair M, Etherington PJ, Peter WC, Evans TW (2001) Tissue oxygenation and perfusion in patients with systemic sepsis. Crit Care Med 29:1343–1349
Hasibeder W, Haisjackl M, Sparr H, Klaunzer S, Horman C, Salak N, Germann R, Stronegger WJ, Hackl JM (1991) Factors influencing transcutaneous oxygen and carbon dioxide measurements in adult intensive care patients. Intensive Care Med 17:272–275
Carter B, Hochmann M, Osborne A, Nisbet A, Campbell N (1995) A comparison of two transcutaneous monitors for the measurement of arterial PO2 and PCO2 in neonates. Anaesth Intensive Care 23:708–714
Phan CQ, Tremper KK, Lee SE, Barker SJ (1987) Noninvasive monitoring of carbon dioxide: a comparison of the partial pressure of transcutaneous and end-tidal carbon dioxide with the partial pressure of arterial carbon dioxide. J Clin Monit 3:149–154
Tremper KK, Shoemaker WC (1981) Transcutaneous oxygen monitoring of critically ill adults, with and without low flow shock. Crit Care Med 9:706709
Shoemaker WC, Wo CC, Bishop MH, Thangathurai D, Patil RS (1996) Noninvasive hemodynamic monitoring of critical patients in the emergency department. Acad Emerg Med 3:675–681
Tremper KK, Barker SJ (1987) Trans- cutaneous oxygen measurement: experimental studies and adult applications. Int Anesthesiol Clin 25:67–96
Reed RL, Maier RV, Landicho D, Kenny MA, Carrico CJ (1985) Correlation of hemodynamic variables with transcutaneous PO2 measurements in critically ill adult patients. J Trauma 25:1045–1053
Tremper KK, Shoemaker WC, Shippy CR, Nolan LS (1981) Transcutaneous PCO2 monitoring on adult patients in the ICU and the operating room. Crit Care Med 9:752–755
Waxman K, Sadler R, Eisner ME, Applebaum R, Tremper KK, Mason GR (1983) Transcutaneous oxygen monitoring of emergency department patients. Am J Surg 146:35–38
Tatevossian RG, Wo CC, Velmahos GC, Demetriades D, Shoemaker WC (2000) Transcutaneous oxygen and CO2 as early warning of tissue hypoxia and hemodynamic shock in critically ill emergency patients. Crit Care Med 28:2248–2253
Fiddian-Green RG, Baker S (1987) Predictive value of the stomach wall pH for complications after cardiac operations: comparison with other monitoring. Crit Care Med 15:153–156
De Backer D, Creteur J (2003) Regional hypoxia and partial pressure of carbon dioxide gradients: what is the link? Intensive Care Med 29:2116–2118
Nakagawa Y, Weil MH, Tang W, Sun S, Yamaguchi H, Jin X, Bisera J (1998) Sublingual capnometry for diagnosis and quantitation of circulatory shock. Am J Respir Crit Care Med 157:18381843
Povoas HP, Weil MH, Tang W, Moran B, Kamohara T, Bisera J (2000) Comparisons between sublingual and gastric tonometry during hemorrhagic shock. Chest 118:1127–1132
Rackow EC, O'Neil P, Astiz ME, Carpati CM (2001) Sublingual capnometry and indexes of tissue perfusion in patients with circulatory failure. Chest 120:1633–1638
Marik PE (2001) Sublingual capnogra- phy: a clinical validation study. Chest 120:923–927
Marik PE, Bankov A (2003) Sublingual capnometry versus traditional markers of tissue oxygenation in critically ill patients. Crit Care Med 31:818–822
Weil MH, Nakagawa Y, Tang W, Sato Y, Ercoli F, Finegan R, Grayman G, Bisera J (1999) Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med 27:1225–1229
Pernat A, Weil MH, Tang W, Yam- aguchi H, Pernat AM, Sun S, Bisera J (1999) Effects of hyper- and hypoventilation on gastric and sublingual PCO (2). J Appl Physiol 87:933–937
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Lima, A., Bakker, J. (2012). Noninvasive monitoring of peripheral perfusion. In: Pinsky, M.R., Brochard, L., Mancebo, J., Antonelli, M. (eds) Applied Physiology in Intensive Care Medicine 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28233-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-28233-1_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28232-4
Online ISBN: 978-3-642-28233-1
eBook Packages: MedicineMedicine (R0)