Skip to main content

The hidden pulmonary dysfunction in acute lung injury

  • Chapter
  • 4261 Accesses

Abstract

In the Intensive Care Medicine Aboab and coworkers [1] now show that the use of 100% O2 in inspired gas at low levels of positive end-expiratory pressure (PEEP 5 cmH2O) promotes lung collapse and impedes gas exchange in patients with acute lung injury. The collapse could be prevented or at least countered during the 30min study period by higher levels of PEEP (15 cmH2O). What do we learn from this?

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aboab J, Jonson B, Kouatchet A, Taille S, Niklason L, Brochard L (2006) Effect of inspired oxygen fraction on alveolar derecruitment in acute respiratory distress syndrome. Intensive Care Med DOI 10.1007/s00134-006-0382-4

    Google Scholar 

  2. Gattinoni L, Caironi P, Pelosi P, Goodman LR (2001) What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care 164:1701–1711

    CAS  Google Scholar 

  3. Hubmayr RD (2002) Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am J Respir Crit Care Med 165:1647–1653

    Article  PubMed  Google Scholar 

  4. Santos C, Ferrer M, Roca J, Torres A, Hernandez C, Rodriguez-Roisin R (2000) Pulmonary gas exchange response to oxygen breathing in acute lung injury. Am J Respir Crit Care Med 161:26–31

    PubMed  CAS  Google Scholar 

  5. Suter P, Fairley H, Schlobohm R (1975) Shunt, lung volume and perfusion during short periods of ventilation with oxygen. Anesthesiology 43:617–627

    Article  PubMed  CAS  Google Scholar 

  6. Lemaire F, Matamis D, Lampron N, Teisseire B, Harf A (1985) Intrapulmonary shunt is not increased by 100% oxygen ventilation in acute respiratory failure. Bull Eur Physiopathol Respir 21:251–256

    PubMed  CAS  Google Scholar 

  7. Barbera JA, Roger N, Roca J, Rovira I, Higenbottam TW, Rodriguez-Roisin R (1996) Worsening of pulmonary gas exchange with nitric oxide inhalation in chronic obstructive pulmonary disease. Lancet 347:436–440

    Article  PubMed  CAS  Google Scholar 

  8. Rylander C, Tylen U, Rossi-Norrlund R, Herrmann P, Quintel M, Bake B (2005) Uneven distribution of ventilation in acute respiratory distress syndrome. Crit Care 9:R165–R171

    Article  PubMed  Google Scholar 

  9. West JB (1977) State of the art: Ventilation-perfusion relationships. Am Rev Respir Dis 116:919–943

    PubMed  CAS  Google Scholar 

  10. Gunnarsson L, Tokics L, Gustavsson H, Hedenstierna G (1991) Influence of age on atelectasis, formation and gas exchange impairment during general anaesthesia. Br J Anaesth 66:423–432

    Article  PubMed  CAS  Google Scholar 

  11. Leblanc P, Ruff F, Milic-Emili J (1970) Effects of age and body position on "airway closure" in man. J Appl Physiol 28:448–451

    PubMed  CAS  Google Scholar 

  12. Dantzker DR, Wagner PD, West JB (1975) Instability of lung units with low VA/Q ratios during O2 breathing. J Appl Physiol 38:886–895

    Google Scholar 

  13. Rothen HU, Sporre B, Engberg G, Wegenius G, Reber A, Hedenstierna G (1995) Prevention of atelectasis during general anaesthesia. Lancet 345:1387–1391

    Article  PubMed  CAS  Google Scholar 

  14. Edmark L, Kostova-Aherdan K, Enlund M, Hedenstierna G (2003) Optimal oxygen concentration during induction of general anesthesia. Anesthesiology 98:28–33

    Article  PubMed  CAS  Google Scholar 

  15. Rothen HU, Sporre B, Engberg G, Wegenius G, Högman M, Hedenstierna G (1995) Influence of gas composition on recurrence of atlectasis after a reexpansion maneuver during general anesthesia. Anesthesiology 82:832–842

    Article  PubMed  CAS  Google Scholar 

  16. Neumann P, Rothen HU, Berglund JE, Valtysson J, Magnusson L, Hedenstierna G (1999) Positive end-expiratory pressure prevents atelectasis during general anaesthesia even in the presence of a high inspired oxygen concentration. Acta Anaesthesiol Scand 43:295–301

    Article  PubMed  CAS  Google Scholar 

  17. Dyhr T, Laursen N, Larsson A (2002) Effects of lung recruitment maneuver and positive end-expiratory pressure on lung volume, respiratory mechanics and alveolar gas mixing in patients ventilated after cardiac surgery. Acta Anaesthesiol Scand 46:717–725

    Article  PubMed  Google Scholar 

  18. Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, Bruno F, Slutsky AS (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54–61

    Article  PubMed  CAS  Google Scholar 

  19. Frostell C, Blomqvist H, Hedenstierna G, Halbig I, Pieper R (1987) Thoracic and abdominal lymph drainage in relation to mechanical ventilation and PEEP. Acta Anaesthesiol Scand 31:405–411

    Article  PubMed  CAS  Google Scholar 

  20. Lattuada M, Hedenstierna G (2006) Abdominal lymph flow in an endotoxin sepsis model: influence of spontaneous breathing and mechanical ventilation. Crit Care Med (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hedenstierna, G. (2012). The hidden pulmonary dysfunction in acute lung injury. In: Pinsky, M.R., Brochard, L., Mancebo, J., Antonelli, M. (eds) Applied Physiology in Intensive Care Medicine 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28233-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28233-1_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28232-4

  • Online ISBN: 978-3-642-28233-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics