Skip to main content

Variability of splanchnic blood flow measurements in patients with sepsis – physiology, pathophysiology or measurement errors?

  • Chapter
Applied Physiology in Intensive Care Medicine 2
  • 4288 Accesses

Abstract

Impaired tissue oxygenation, especially in the splanchnic region, may play a central role both in the pathogenesis of multiple organ dysfunction and in the development of complications in various groups of intensive care patients [1, 2]. In severe inflammation such as SIRS, septic infection, and septic shock, the metabolic demand for oxygen in the splanchnic region is increase [3, 4, 5]. This is explanied in part by and increased hepatic metabolism [6, 7]. In patients with normal or hyperdynamic hemodynamics, but the increase in oxygen consumption is disproportionate to the increase in blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kirton OC, Windsor J, Wedderburn R, Hudson-Civetta J, Shatz DV, Mataragas NR, Civetta JM (1998) Failure of splanchnic resuscitation in the acutely injured trauma patient correlates with multiple organ system failure and length of stay in the ICU. Chest 113: 1064–1069

    Article  PubMed  CAS  Google Scholar 

  2. Swank GM, Deitch EA (1996) Role of the gut in multiple organ failure: bacterial translocation and permeability changes. World J Surg 20: 411–417

    Article  PubMed  CAS  Google Scholar 

  3. Dahn MS, Lange P, Lobdell K, Hans B, Jacobs LA, Mitchell RA (1987) Splanchnic and total body oxygen consumption differences in septic and injured patients. Surgery 101: 69–80

    PubMed  CAS  Google Scholar 

  4. Dahn MS, Lange MP, Wilson RF, Jacobs LA, Mitchell RA (1990) Hepatic blood flow and splanchnic oxygen consumption measurements in clinical sepsis. Surgery 107: 295–301

    PubMed  CAS  Google Scholar 

  5. Ruokonen E, Takala J, Kari A, Saxen H, Mertsola J, Hansen EJ (1993) Regional blood flow and oxygen transport in septic shock. Crit Care Med 21: 1296–1303

    Article  PubMed  CAS  Google Scholar 

  6. Dahn MS, Mitchell RA, Lange MP, Smith S, Jacobs LA (1995) Hepatic metabolic response to injury and sepsis. Surgery 117: 520–530

    Article  PubMed  CAS  Google Scholar 

  7. Reinelt H, Radermacher P, Fischer G, Geisser W, Wachter U, Wiedeck H, Georgieff M, Vogt J (1997) Effects of a dobutamine-induced increase in splanchnic blood flow on hepatic metabolic activity in patients with septic shock. Anesthesiology 86: 818–824

    Article  PubMed  CAS  Google Scholar 

  8. Parker MM, Shelhamer JH, Bacharach SL, Green MV, Natanson C, Frederick TM, Damske BA, Parrillo JE (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100: 483–490

    PubMed  CAS  Google Scholar 

  9. Giroir BP, Stromberg D (2000) Myocar- dial depression versus myocardial destruction: integrating the multiple mechanisms of myocardial dysfunction during sepsis. Crit Care Med 28: 3111–3112

    Article  PubMed  CAS  Google Scholar 

  10. Zhang H, Smail N, Cabral A, Cherka- oui S, Peny MO, Vincent JL (1999) Hepato-splanchnic blood flow and oxygen extraction capabilities during experimental tamponade: effects of en- dotoxin. J Surg Res 81:129–138

    Article  PubMed  CAS  Google Scholar 

  11. Bradley SE, Ingelfinger FJ, Bradley GP, Curry JJ (1945) The estimation of hepatic blood flow in man. J Clin Invest 24: 890–897

    Article  Google Scholar 

  12. Leevy CV, Mendehall CL, Lesko W, Howard MK (1962) Estimation of hepatic blood flow with indocyanine green. J Clin Invest 41:1169–1179

    Article  PubMed  CAS  Google Scholar 

  13. Uusaro A, Ruokonen E, Takala J (1995) Estimation of splanchnic blood flow by the Fick principle in man and problems in the use of indocyanine green. Cardiovasc Research 30:106–112

    CAS  Google Scholar 

  14. Sakka SG, Reinhart K, Wegscheider K, Meier-Hellmann A (2001) Variability of splanchnic blood flow in patients with sepsis. Intensive Care Med 8: 1281–1287

    Article  Google Scholar 

  15. Ruokonen E, Takala J, Kari A, Saxen H, Mertsola J, Hansen EJ (1993) Regional blood flow and oxygen transport in septic shock. Crit Care Med 21: 1296–1303

    Article  PubMed  CAS  Google Scholar 

  16. Ruokonen E, Uusaro A, Alhava E, Ta- kala J (1997) The effect of dobutamine infusion on splanchnic blood flow and oxygen transport in patients with acute pancreatitis. Intensive Care Med 23: 732–737

    Article  PubMed  CAS  Google Scholar 

  17. Meier-Hellmann A, Bredle DL, Specht M, Spies C, Hannemann L, Reinhart K (1997) The effects of low-dose dopam- ine on splanchnic blood flow and oxygen uptake in patients with septic shock. Intensive Care Med 23: 31–37

    Article  PubMed  CAS  Google Scholar 

  18. Nobrega AC, dos Reis AF, Moraes RS, Bastos BG, Ferlin EL, Ribeiro JP (2001) Enhancement of heart rate variability by cholinergic stimulation with pyridostigmine in healthy subjects. Clin Auton Res 11:11–17

    Article  PubMed  CAS  Google Scholar 

  19. Jauregui-Renaud K, Hermosillo AG, Marquez MF, Ramos-Aguilar F, Her- nandez-Goribar M, Cardenas M (2001) Repeatability of heart rate variability during simple cardiovascular reflex tests on healthy subjects. Arch Med Res 32: 21–26

    Article  PubMed  CAS  Google Scholar 

  20. Gillman MW, Kannel WB, Belanger A, D'Agostino RB (1993) Influence of heart rate on mortality among persons with hypertension: the Framingham Heart Study. Am Heart J 125: 1148–1154

    Article  PubMed  CAS  Google Scholar 

  21. Kannel WB, Kannel C, Paffenbarger RSJ, Cupples LA (1987) Heart rate and cardiovascular mortality: the Fra- mingham Study. Am Heart J 113: 1489–1494

    Article  PubMed  CAS  Google Scholar 

  22. Dyer AR, Persky V, Stamler J, Paul O, Shekelle RB, Berkson DM, Lepper M, Schoenberger JA, Lindberg HA (1980) Heart rate as a prognostic factor for coronary heart disease and mortality: findings in three Chicago epidemiologic studies. Am J Epidemiol 112: 736–749

    PubMed  CAS  Google Scholar 

  23. Tsuji H, Venditti FJ Jr, Manders ES, Evans JC, Larson MG, Feldman CL, Levy D (1996) Determinants of heart rate variability. J Am Coll Cardiol 28: 1539–1546

    Article  PubMed  CAS  Google Scholar 

  24. Kuch B, Hense HW, Sinnreich R, Kark JD, von Eckardstein A, Sapoznikov D, Bolte HD (2001) Determinants of short-period heart rate variability in the general population. Cardiology 95: 131–138

    Article  PubMed  CAS  Google Scholar 

  25. Singh JP, Larson MG, O'Donnell CJ, Tsuji H, Evans JC, Levy D (1999) Heri- tability of heart rate variability (The Framingham Heart Study). Circulation 99: 2251–2254

    PubMed  CAS  Google Scholar 

  26. Singh JP, Larson MG, O'Donnell CJ, Wilson PF, Tsuji H, Lloyd-Jones DM, Levy D (2000) Association of hypergly- cemia with reduced heart rate variability (The Framingham Heart Study). Am J Cardiol 86: 309–312

    Article  PubMed  CAS  Google Scholar 

  27. Korach M, Sharshar T, Jarrin I, Fouillot JP, Raphael JC, Gajdos P, Annane D (2001) Cardiac variability in critically ill adults: influence of sepsis. Crit Care Med 29:1380–1385

    Article  PubMed  CAS  Google Scholar 

  28. Lemmer B, Nold G (1991) Circadian changes in estimated hepatic blood flow in healthy subjects. Br J Clin Pharmacol 32: 627–629

    PubMed  CAS  Google Scholar 

  29. Lycklama a Nijeholt GJ, Burggraaf K, Wasser MN, Schultze Kool LJ, Schoe- maker RC, Cohen AF, de Roos A (1997) Variability of splanchnic blood flow measurements using MR velocity mapping under fasting and post-prandial conditions-comparison with echo- Doppler. J Hepatol 26: 298–304

    Google Scholar 

  30. Willeput R, Rondeux C, De Troyer A (1984) Breathing affects venous return from legs in humans. J Appl Physiol 57: 971–976

    PubMed  CAS  Google Scholar 

  31. Letienne R, Julien C, Zhang ZQ, Barres C (1998) Characterization of a major slow oscillation in the mesenteric circulation of conscious rats. Clin Exp Pharmacol Physiol 25: 820–824

    Article  PubMed  CAS  Google Scholar 

  32. Jakob SM, Parviainen I, Ruokonen E, Takala J (2000) Variability of continually measured gastric-mucosal PC02 in critically ill patients and effect of raniti- dine. Intensive Care Med 26:S429

    Article  Google Scholar 

  33. Godin PJ, Fleisher LA, Eidsath A, Vandivier RW, Preas HL, Banks SM, Buchman TG, Suffredini AF (1996) Experimental human endotoxemia increases cardiac regularity: results from a prospective, randomized, crossover trial. Crit Care Med 1996 24:1117–1124

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jakob, S.M., Takala, J. (2012). Variability of splanchnic blood flow measurements in patients with sepsis – physiology, pathophysiology or measurement errors?. In: Pinsky, M.R., Brochard, L., Mancebo, J., Antonelli, M. (eds) Applied Physiology in Intensive Care Medicine 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28233-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28233-1_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28232-4

  • Online ISBN: 978-3-642-28233-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics