Skip to main content

Interpretation of blood pressure signal: physiological bases, clinical relevance, and objectives during shock states

  • Chapter
Applied Physiology in Intensive Care Medicine 2

Abstract

Achievement of a mean blood pressure (MBP) target is one of the hemodynamic goals to ensure an adequate blood perfusion pressure in critically ill patients. Arterial catheter allows for a continuous and precise monitoring of arterial pressure signal. In addition to giving a precise MBP monitoring, analysis of the blood pressure wave provides information that may help the clinician to interpret hemodynamic status. The interpretation of BP wave requires the understanding of simple principles. In this review, we first discuss the physiological mechanism responsible for arterial pressure generation. We then emphasize the interpretation of the static indexes and the dynamic indexes generated by heart–lung interactions derived from arterial pressure wave. Finally, we focus on MBP value as a therapeutic target in critically ill patients. We discuss the recommended target MBP value by reviewing available data from experimental and clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ARDS:

Acute respiratory distress syndrome

BP:

Blood pressure

C:

Compliance

CO:

Cardiac output

DBP:

Diastolic blood pressure

HR:

Heart rate

LV:

Left ventricle

MBP:

Mean blood pressure

PEEP:

Positive end-expiratory pressure

PP:

Pulse pressure

RV:

Right ventricle

SBP:

Systolic blood pressure

SV:

Stroke volume

SVR:

Systemic vascular resistance

RAP:

Right atrial pressure

References

  1. Chemla D, Hebert JL, Coirault C, Zamani K, Suard I, Colin P, Lecarpentier Y (1998) Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol 274:H500-H505

    PubMed  CAS  Google Scholar 

  2. O'Rourke MF, Nichols WW (2005) Aortic diameter, aortic stiffness, and wave reflection increase with age and isolated systolic hypertension. Hypertension 45:652–658

    Article  PubMed  Google Scholar 

  3. Kroeker EJ, Wood EH (1955) Comparison of simultaneously recorded central and peripheral arterial pressure pulses during rest, exercise and tilted position in man. Circ Res 3:623–632

    PubMed  CAS  Google Scholar 

  4. O'Rourke MF, Pauca AL (2004) Augmentation of the aortic and central arterial pressure waveform. Blood Press Monit 9:179–185

    Article  PubMed  Google Scholar 

  5. O'Rourke MF (2009) Time domain analysis of the arterial pulse in clinical medicine. Med Biol Eng Comput 47:119–129

    Article  PubMed  Google Scholar 

  6. Michard F, Teboul JL, Richard C, Lecarpentier Y, Chemla D (2003) Arterial pressure monitoring in septic shock. Intensive Care Med 29:659

    PubMed  Google Scholar 

  7. Nichols WW, O'Rourke MF (1998) McDonald's blood flow in arteries: theoretical, experimental and clinical principles. Arnold, London

    Google Scholar 

  8. Braunwald E, Sonnenblick E, Ross J (1988) Mechanisms of cardiac contraction and relaxation. In: Braunwald E (ed) Heart disease. Saunders, Philadelphia, pp 383–425

    Google Scholar 

  9. Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P (1998) Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89:1313–1321

    Article  PubMed  CAS  Google Scholar 

  10. Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4:282–289

    Article  PubMed  CAS  Google Scholar 

  11. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138

    PubMed  CAS  Google Scholar 

  12. Marik PE, Cavallazzi R, Vasu T, Hirani A (2009) Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 37:2642–2647

    Article  PubMed  Google Scholar 

  13. Monnet X, Teboul JL (2007) Volume responsiveness. Curr Opin Crit Care 13:549–553

    Article  PubMed  Google Scholar 

  14. Michard F, Chemla D, Richard C, Wysocki M, Pinsky MR, Lecarpentier Y, Teboul JL (1999) Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 159:935–939

    PubMed  CAS  Google Scholar 

  15. Soubrier S, Saulnier F, Hubert H, Delour P, Lenci H, Onimus T, Nseir S, Durocher A (2007) Can dynamic indicators help the prediction of fluid responsiveness in spontaneously breathing critically ill patients? Intensive Care Med 33:1117–1124

    Article  PubMed  Google Scholar 

  16. Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul JL (2009) Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med 37:951–956

    Article  PubMed  Google Scholar 

  17. De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL (2005) Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 31:517–523

    Article  PubMed  Google Scholar 

  18. Teboul JL, Vieillard-Baron A (2005) Clinical value of pulse pressure variations in ARDS. Still an unresolved issue? Intensive Care Med 31:499–500

    Article  PubMed  Google Scholar 

  19. Huang CC, Fu JY, Hu HC, Kao KC, Chen NH, Hsieh MJ, Tsai YH (2008) Prediction of fluid responsiveness in acute respiratory distress syndrome patients ventilated with low tidal volume and high positive end- expiratory pressure. Crit Care Med 36:2810–2816

    Article  PubMed  Google Scholar 

  20. Johnson PC (1986) Autoregulation of blood flow. Circ Res 59:483–495

    PubMed  CAS  Google Scholar 

  21. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL (2008) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36:296–327

    Article  PubMed  Google Scholar 

  22. Terborg C, Schummer W, Albrecht M, Reinhart K, Weiller C, Rother J (2001) Dysfunction of vasomotor reactivity in severe sepsis and septic shock. Intensive Care Med 27:1231–1234

    Article  PubMed  CAS  Google Scholar 

  23. Shepherd AP, Pawlik W, Mailman D, Burks TF, Jacobson ED (1976) Effects of vasoconstrictors on intestinal vascular resistance and oxygen extraction. Am J Physiol 230:298–305

    PubMed  CAS  Google Scholar 

  24. Gombos EA, Hulet WH, Bopp P, Goldringw, Baldwin DS, Chasis H (1962) Reactivity of renal and systemic circulations to vasoconstrictor agents in normotensive and hypertensive subjects. J Clin Invest 41:203–217

    Article  PubMed  CAS  Google Scholar 

  25. Zhang H, Smail N, Cabral A, Rogiers P, Vincent JL (1997) Effects of norepinephrine on regional blood flow and oxygen extraction capabilities during endotoxic shock. Am J Respir Crit Care Med 155:1965–1971

    PubMed  CAS  Google Scholar 

  26. Anderson WP, Korner PI, Selig SE (1981) Mechanisms involved in the renal responses to intravenous and renal artery infusions of noradrenaline in conscious dogs. J Physiol 321:21–30

    PubMed  CAS  Google Scholar 

  27. Di Giantomasso D, Morimatsu H, May CN, Bellomo R (2003) Intrarenal blood flow distribution in hyperdynamic septic shock: effect of norepinephrine. Crit Care Med 31:2509–2513

    Article  PubMed  Google Scholar 

  28. Asfar P, De Backer D, Meier-Hellmann A, Radermacher P, Sakka SG (2004) Clinical review: influence of vasoactive and other therapies on intestinal and hepatic circulations in patients with septic shock. Crit Care 8:170–179

    Article  PubMed  Google Scholar 

  29. Hollenberg SM (2009) Inotrope and vasopressor therapy of septic shock. Crit Care Clin 25:781–802

    Article  PubMed  CAS  Google Scholar 

  30. Bourgoin A, Leone M, Delmas A, Garnier F, Albanese J, Martin C (2005) Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med 33:780–786

    Article  PubMed  CAS  Google Scholar 

  31. LeDoux D, Astiz ME, Carpati CM, Rackow EC (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28:2729–2732

    Article  PubMed  CAS  Google Scholar 

  32. Deruddre S, Cheisson G, Mazoit JX, Vicaut E, Benhamou D, Duranteau J (2007) Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med 33:1557–1562

    Article  PubMed  Google Scholar 

  33. Jhanji S, Stirling S, Patel N, Hinds CJ, Pearse RM (2009) The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock. Crit Care Med 37:1961–1966

    Article  PubMed  CAS  Google Scholar 

  34. Dubin A, Pozo MO, Casabella CA, Palizas F Jr, Murias G, Moseinco MC, Kanoore Edul VS, Palizas F, Estenssoro E, Ince C (2009) Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care 13:R92

    Article  PubMed  Google Scholar 

  35. Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki LM, Pettila V (2005) Hemodynamic variables related to outcome in septic shock. Intensive Care Med 31:1066–1071

    Article  PubMed  Google Scholar 

  36. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal- directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  37. Russell JA, Walley KR, Singer J, Gordon AC, Hebert PC, Cooper DJ, Holmes CL, Mehta S, Granton JT, Storms MM, Cook DJ, Presneill JJ, Ayers D (2008) Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med 358:877–887

    Article  PubMed  CAS  Google Scholar 

  38. Annane D, Vignon P, Renault A, Bollaert PE, Charpentier C, Martin C, Troche G, Ricard JD, Nitenberg G, Papazian L, Azoulay E, Bellissant E (2007) Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock: a randomised trial. Lancet 370:676–684

    Article  PubMed  CAS  Google Scholar 

  39. Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, Fumagalli R (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med 333:1025–1032

    Article  PubMed  CAS  Google Scholar 

  40. Lopez A, Lorente JA, Steingrub J, Bakker J, McLuckie A, Willatts S, Brockway M, Anzueto A, Holzapfel L, Breen D, Silverman MS, Takala J, Donaldson J, Arneson C, Grove G, Grossman S, Grover R (2004) Multiple- center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 32:21–30

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Augusto, JF., Teboul, JL., Radermacher, P., Asfar, P. (2012). Interpretation of blood pressure signal: physiological bases, clinical relevance, and objectives during shock states. In: Pinsky, M.R., Brochard, L., Mancebo, J., Antonelli, M. (eds) Applied Physiology in Intensive Care Medicine 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28233-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28233-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28232-4

  • Online ISBN: 978-3-642-28233-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics