Advertisement

Mathematical Models to Predict the Critical Conditions for Bacterial Self-healing of Concrete

  • Serguey V. Zemskov
  • Henk M. Jonkers
  • Fred J. Vermolen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7125)

Abstract

Two mathematical models for bacterial self-healing of a crack are considered. The study is embedded within the framework of investigating the potential of bacteria to act as a catalyst of the self-healing process in concrete, that is the ability of concrete to repair occurring cracks autonomously. The first model concerns an analytic formalism to compute the probability that a crack hits an encapsulated particle. Hence, it predicts the probability that the self-healing process starts. The second model of the self-healing process is based on a moving boundary problem. A Galerkin finite-element method is used to solve the diffusion equations. The moving boundaries are tracked using a level set method.

Keywords

Mathematical modeling Moving boundary problem Self-healing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balazs, A.C.: Modeling self-healing materials. Materials Today 10(9), 18–23 (2007)CrossRefGoogle Scholar
  2. 2.
    Bratbak, G., Dundas, I.: Bacterial dry matter content and biomass estimation. Applied and Environmental Microbiology, 755–757 (October 1984)Google Scholar
  3. 3.
    Chen, S., Merriman, B., Osher, S., Smereka, P.: A simple level set method for solving Stefan problems. J. Comp. Physics 135, 8–29 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cleveland, C.C., Liptzin, D.: C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85, 235–252 (2007)CrossRefGoogle Scholar
  5. 5.
    Fischer, H.: Self-repairing material systems — a dream or a reality? Natural Science 2(8), 873–901 (2010)CrossRefGoogle Scholar
  6. 6.
    Gibson, R.F.: A review of recent research on mechanics of multifunctional composite materials and structures. Composite Structures 92, 2793–2810 (2010)CrossRefGoogle Scholar
  7. 7.
    Jonkers, H.M., Schlangen, E.: Development of a bacteria-based self healing concrete. In: Walraven, J.C., Stoelhorst, D. (eds.) Proc. Int. FIB Symp. on Tailor Made Concrete Structures — New Solution for our Society, pp. 425–430. CRC Press, London (2008)Google Scholar
  8. 8.
    Jonkers, H.M., Thijssen, A., Muyzer, G., Copuroglu, O., Schlangen, E.: Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering 36(2), 230–235 (2010)CrossRefGoogle Scholar
  9. 9.
    Mookhoek, S.D., Fischer, H.R., van der Zwaag, S.: A numerical study into the effects of elongated capsules on the healing efficiency of liquid-based systems. J. Comp. Mat. Sci. 47(2), 506–511 (2009)CrossRefGoogle Scholar
  10. 10.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Pang, J.W.C., Bond, I.P.: “Bleeding composites” — damage detection and self-repair using a biomimetic approach. Composites Part A 36, 183–188 (2005)CrossRefGoogle Scholar
  12. 12.
    Rényi, A.: Wahrscheinlichkeitsrechnung, 2. Aufl., Deutscher Verlag der Wissenschaften, Berlin (1966)Google Scholar
  13. 13.
    Sethian, J.A.: Fast marching methods. SIAM Rev. 41, 199–235 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sethian, J.A.: Level set methods and fast marching methods. Cambridge University Press, New York (1999)zbMATHGoogle Scholar
  15. 15.
    Toohey, K.S., Sottos, N.R., Lewis, J.A., Moor, J.S., White, S.R.: Self-healing materials with microvascular networks. Nature Materials 6, 581–585 (2007)CrossRefGoogle Scholar
  16. 16.
    Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.-J.: A front-tracking method for the computations of multiphase flow. J. Comp. Physics 169, 708–759 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wheeler, A.A., Boettinger, W.J., McFadden, G.B.: Phase-field model for isothermal phase transitions in binary alloys. Physical Review A 45, 7424–7439 (1992)CrossRefGoogle Scholar
  18. 18.
    White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N., Viswanathan, S.: Autonomic healing of polymer composites. Nature 409, 794–797 (2001)CrossRefGoogle Scholar
  19. 19.
    Wilson, G.O., Moore, J.S., White, S.R., Sottos, N.R., Andersson, H.M.: Autonomic healing of epoxy vinyl esters via ring opening metathesis polymerization. Advanced Functional Materials 18(1), 44–52 (2008)CrossRefGoogle Scholar
  20. 20.
    Wolfram, S.: The Mathematica Book. Wolfram Media, Champaign (2003)zbMATHGoogle Scholar
  21. 21.
    Yin, T., Rong, M.Z., Zhang, M.Q., Yang, G.C.: Self-healing epoxy composites — preparation and effect of the healant consisting of microencapsulated epoxy and latent curing agent. Composites Science and Technology 67, 201–212 (2007)CrossRefGoogle Scholar
  22. 22.
    Zemskov, S.V., Jonkers, H.M., Vermolen, F.J.: An Analytical Model for the Probability Characteristics of a Crack Hitting an Encapsulated Self-Healing Agent in Concrete. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 280–292. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Zemskov, S.V., Jonkers, H.M., Vermolen, F.J.: Two analytical models for the probability characteristics of a crack hitting encapsulated particles: Application to self-healing materials. J. Comp. Mat. Sci. 50, 3323–3333 (2011)Google Scholar
  24. 24.
    van der Zwaag, S. (ed.): Self healing materials: An alternative approach to 20 centuries of materials science. Springer Series in Materials Science, vol. 100 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Serguey V. Zemskov
    • 1
  • Henk M. Jonkers
    • 1
  • Fred J. Vermolen
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations