Advertisement

Multi-channel Computations in Low-Dimensional Few-Body Physics

  • Vladimir S. Melezhik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7125)

Abstract

In this lecture I give a brief review of low-dimensional few-body problems recently encountered in attempting a quantitative description of ultracold atoms and molecules confined in 2D and 1D optical lattices. Multi-channel nature of these processes has required the development of special computational methods and algorithms which I discuss here as well as the most interesting results obtained with the offered computational technique and future perspectives.

Keywords

optical trap ultracold atoms Feshbach resonance confinement-induced resonance few-body problem Schrödinger equation scattering problem discrete variable representation boundary-value problem splitting-up method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baye, D.: Lagrange-Mesh Method for Quantum-Mechanical Problems. Phys. Stat. Sol. (b) 243, 1095–1109 (2006)CrossRefGoogle Scholar
  2. 2.
    Bergeman, T., Moore, M.G., Olshanii, M.: Atom-Atom Scattering under Cylindrical Harmonic Confinement: Numerical and Analytic Studies of the Confinement Induced Resonance. Phys Rev. Lett. 91, 163201-1–4 (2003)Google Scholar
  3. 3.
    Bloch, I., Dalibard, J., Zwerger, W.: Many-Body Physics with Ultracold Gases. Rev. Mod. Phys. 80, 885–964 (2008)CrossRefGoogle Scholar
  4. 4.
    Capel, P., Melezhik, V.S., Baye, D.: Time-Dependent Analysis of the Breakup of Halo Nuclei. Phys. Rev. C 68, 014612-1–15 (2003)Google Scholar
  5. 5.
    Gelfand, I.M., Fomin, S.V.: Calculus of Variationes. Dover Publ., New York (2000)Google Scholar
  6. 6.
    Chin, C., Grimm, R., Julienne, P., Tiesinga, E.: Feshbach Resonances in Ultracold Gases. Rev. Mod. Phys. 82, 1225–1286 (2010)CrossRefGoogle Scholar
  7. 7.
    Granger, B.E., Blume, D.: Tuning the Interactions of Spin-Polarized Fermions Using Quasi-One-Dimensional Confinement. Phys. Rev. Lett. 92, 133202-1–4 (2004)Google Scholar
  8. 8.
    Haller, E., Mark, M.J., Hart, R., Danzl, J.G., Reichsollner, L., Melezhik, V., Schmelcher, P., Nägerl, H.-C.: Confinement-Induced Resonances in Low-Dimensional Quantum Systems. Phys Rev. Lett. 104, 153203-1–4 (2010)Google Scholar
  9. 9.
    Kestner, J.P., Duan, L.M.: Anharmonicity-induced resonances for ultracold atoms and their detection. New J. Phys. 12, 053016-1–6 (2010)Google Scholar
  10. 10.
    Kim, J.I., Melezhik, V.S., Schmelcher, P.: Suppression of Quantum Scattering in Strongly Confined Systems. Phys. Rev. Lett. 97, 193203-1–4 (2006)Google Scholar
  11. 11.
    Kim, J.I., Melezhik, V.S., Schmelcher, P.: Quantum Confined Scattering Beyond the s-Wave Approximation. In: Nakamura, K., Harayama, T., Takatsuka, K. (eds.) Proc. Int. Conf. on Quantum Mechanics and Chaos, September 19-20, Osaka Univ. (2006); Progr. Theor. Phys. Suppl., vol. 166, pp. 159–169 (2007)Google Scholar
  12. 12.
    Kohler, I., Goral, K., Julienne, P.S.: Production of Cold Molecules via Magnetically Tunable Feshbach Resonances. Rev. Mod. Phys. 78, 1311–1361 (2006)CrossRefGoogle Scholar
  13. 13.
    Light, J.C., Carrington, T.: Discrete-Variable Representations and their Utilizations. In: Prigogine, I., Rice, S.A. (eds.) Adv. Chem. Phys., vol. 114. John Wiley and Sons, Inc., Hoboken (2007)Google Scholar
  14. 14.
    Lill, J.V., Parker, G.A., Light, J.C.: Discrete Variable Representations and Sudden Models in Quantum Scattering Theory. Chem. Phys. Lett. 89, 483–489 (1982)CrossRefGoogle Scholar
  15. 15.
    Marchuk, G.I.: Methods of Numerical Mathematics. Sec.4.3.3. Springer, New York (1975)Google Scholar
  16. 16.
    Melezhik, V.S., Kim, J.I., Schmelcher, P.: Wave-Packet Dynamical Analysis of Ultracold Scattering in Cylindrical Waveguides. Phys. Rev. A76, 053611-1–15 (2007)Google Scholar
  17. 17.
    Melezhik, V.S., Schmelcher, P.: Quantum Dynamics of Resonant Molecule Formation in Waveguides. New J. Phys. 11, 073031-1–10 (2009)Google Scholar
  18. 18.
    Melezhik, V.S.: Polarization of Harmonics Generated from a Hydrogen Atom in a Strong Laser Field. Phys. Lett. A 230, 203–208 (1997)CrossRefGoogle Scholar
  19. 19.
    Melezhik, V.S.: A Computational Method for Quantum Dynamics of a Three-Dimensional Atom in Strong Fields. In: Schmelcher, P., Schweizer, W. (eds.) Atoms and Molecules in Strong External Fields, pp. 89–94. Plenum, New York (1998)Google Scholar
  20. 20.
    Melezhik, V.S., Baye, D.: Nonperturbative Time-Dependent Approach to Breakup of Halo Nuclei. Phys. Rev. C 59, 3232–3239 (1999)CrossRefGoogle Scholar
  21. 21.
    Melezhik, V.S., Schmelcher, P.: Quantum Energy Flow in Atomic Ions Moving in Magnetic Fields. Phys. Rev. Lett. 84, 1870–1873 (2000)CrossRefGoogle Scholar
  22. 22.
    Melezhik, V.S., Cohen, J.S., Hu, C.Y.: Stripping and Excitation in Collisions between p and He +  ( n ≤ 3 ) Calculated by a Quantum Time-Dependent Approach with Semiclassical Trajectories. Phys. Rev. A69, 032709-1–15 (2004)Google Scholar
  23. 23.
    Melezhik, V.S.: New Method for Solving Multidimensional Scattering Problem. J. Comp. Phys. 92, 67–81 (1991)CrossRefzbMATHGoogle Scholar
  24. 24.
    Melezhik, V.S., Hu, C.Y.: Ultracold Atom-Atom Collisions in Nonresonant Laser Field. Phys. Rev. Lett. 90, 083202-1–4 (2003)Google Scholar
  25. 25.
    Olshanii, M.: Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons. Phys Rev. Lett. 81, 938–941 (1998)CrossRefGoogle Scholar
  26. 26.
    Pitaevskii, L.P.: Bose-Einstein Condensates in a Laser Radiation Field. Phys. Uspekhi 49, 333–351 (2006)CrossRefGoogle Scholar
  27. 27.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes. Cambridge Univ. Press, Cambridge (1992)zbMATHGoogle Scholar
  28. 28.
    Saeidian, S., Melezhik, V.S., Schemelcher, P.: Multichannel Atomic Scattering and Confinement-Induced Resonances in Waveguides. Phys. Rev. A77, 042721-1–15 (2008)Google Scholar
  29. 29.
    Wang, X.-C., Carrington, T.: Using a Nondirect Product Discrete Variable Representation for Angular Coordinates to Compute Vibrational Levels of Polyatomic Molecules. J. Chem. Phys. 19, 194109-1–8 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vladimir S. Melezhik
    • 1
  1. 1.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussian Federation

Personalised recommendations