Mathematical Modeling of Finite Quantum Systems

  • Vladimir V. Kornyak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7125)


We consider the problem of quantum behavior in the finite background. Introduction of continuum or other infinities into physics leads only to technical complications without any need for them in description of empirical observations. The finite approach makes the problem constructive and more tractable. We argue that quantum behavior is a natural consequence of the dynamical system symmetries. It is a result of fundamental impossibility to trace identity of indistinguishable objects in their evolution — only information about invariant combinations of such objects is available. We demonstrate that any quantum dynamics can be embedded into a simple permutation dynamics. Quantum phenomena, such as interferences, arise in invariant subspaces of permutation representations of the symmetry group of a system. Observable quantities can be expressed in terms of the permutation invariants.


quantum behavior finite groups permutation invariants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altarelli, G., Feruglio, F.: Discrete flavor symmetries and models of neutrino mixing. Rev. Mod. Phys. 82(3), 2701–2729 (2010)CrossRefGoogle Scholar
  2. 2.
    Blum, A., Hagedorn, C.: The Cabibbo Angle in a Supersymmetric D14 Model. Nucl. Phys. B821, 327–353 (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    GAP — Groups, Algorithms, Programming — a System for Computational Discrete Algebra,
  4. 4.
    Hall Jr., M.: The Theory of Groups. Macmillan, New York (1959)zbMATHGoogle Scholar
  5. 5.
    Harrison, P.F., Perkins, D.H., Scott, W.G.: Tri-bimaximal mixing and the neutrino oscillation data. Phys. Lett. B 530, 167 (2002) arXiv: hep-ph/0202074CrossRefGoogle Scholar
  6. 6.
    Harrison, P.F., Scott, W.G.: Permutation symmetry, Tri-bimaximal neutrino mixing and the S3 group characters. Phys. Lett. B 557, 76 (2003) arXiv: hep-ph/0302025MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ishimori, H., Kobayashi, T., Ohki, H., Okada, H., Shimizu, Y., Tanimoto, M.: Non-abelian discrete symmetries in particle physics. Prog. Theor. Phys. Suppl. 183, 1–173 (2010) arXiv:1003.3552CrossRefzbMATHGoogle Scholar
  8. 8.
    Klein, F.: Vorlesungen über das Ikosaeder. Teubner, Leipzig (1884)zbMATHGoogle Scholar
  9. 9.
    Kornyak, V.V.: Quantization in discrete dynamical systems. J. Math. Sci. 168(3), 390–397 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kornyak, V.V.: Structural and Symmetry Analysis of Discrete Dynamical Systems. In: Cellular Automata, pp. 119–163. Nova Science Publishers, Inc., New York (2011), Google Scholar
  11. 11.
    Ludl, P.O.: Systematic Analysis of Finite Family Symmetry Groups and Their Application to the Lepton Sector, arXiv:0907.5587Google Scholar
  12. 12.
    McKay, B.D.: Practical Graph Isomporphism. Congressus Numerantium 30, 45–87 (1981), MathSciNetGoogle Scholar
  13. 13.
    Nakamura, K., et al. (Particle Data Group):  The review of particle physics. J. Phys. G 37, 075021, 1–1422 (2010)CrossRefGoogle Scholar
  14. 14.
    Shafarevich, I.R.: Basic Notions of Algebra. Springer, Berlin (1990)CrossRefzbMATHGoogle Scholar
  15. 15.
    Smirnov, A.Y.: Discrete Symmetries and Models of Flavor Mixing, p. 14 (2011) arXiv:1103.3461Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vladimir V. Kornyak
    • 1
  1. 1.Laboratory of Information TechnologiesJoint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations