Numerical Simulation of Heat Conductivity in Composite Object with Cylindrical Symmetry

  • Alexander Ayriyan
  • Edik A. Ayryan
  • Eugeny Donets
  • Ján Pribiš
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7125)


A parallel algorithm for numerical solution of the mixed problem for heat transport with discontinuous coefficients is presented. The problem is motivated by simulation of heat conductivity in a composite object, when it is heated by the electric current passing through one relatively thin layer. The object is considered to be a cryogenic cell pulse (in the millisecond range) feeding the working gases into some source of highly charged ions. Results are reported for a common configuration of the cell.


Heat transfer partial differential equation finite-difference scheme parallel algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guangwei, Y., Zhiqiang, S., Xudeng, H.: The unconditional stability of parallel difference schemes with second order convergence for nonlinear parabolic system. J. Partial Diff. Eqs. 20, 45–64 (2007)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Hayryan, E.A., Vabishchevich, P.N., Pavlus, M., Fedorov, A.V.: Additive difference schemes for filtration problems in multilayer systems. Matem. Mod. 13(10), 91–102 (2001)Google Scholar
  3. 3.
    Kalitkin, N.N.: Numerical Methods, Calculus of Approximations. Nauka, Moscow (1978)Google Scholar
  4. 4.
    Li, N., Steiner, J., Tang, S.: Convergence and stability analysis off an explicit difference method for 2-dimensional reaction-diffusion equations. J. Austral. Math. Soc. Ser. B 36, 234–241 (1994)CrossRefzbMATHGoogle Scholar
  5. 5.
    National Institute Of Standards And Technology,
  6. 6.
    Purcz, P.: Parallel Algorithm for Spatially One- and Two-dimensional Initial-boundary-value Problem for a parabolic equation. Kybernetika 37(2), 171–181 (2001)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Samarsky, A.A.: The Theory of Difference Schemes. Marcel Dekker Inc., New York (2001)CrossRefGoogle Scholar
  8. 8.
    Samarskii, A.A., Vabishchevich, P.N.: Computational heat transfer. Mathematical Modelling, vol. 1. John Wiley & Sons Ltd., Chichester (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexander Ayriyan
    • 1
  • Edik A. Ayryan
    • 1
  • Eugeny Donets
    • 2
  • Ján Pribiš
    • 3
  1. 1.Laboratory of Information TechnologiesJoint Institute for Nuclear ResearchDubnaRussia
  2. 2.Veksler and Baldin Laboratory of High Energy PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  3. 3.Faculty of Electrical Engineering and InformaticsTechnical University of KošiceKošiceSlovakia

Personalised recommendations