Advertisement

Numerical Study of Stationary, Time-Periodic, and Quasiperiodic Two-Soliton Complexes in the Damped-Driven Nonlinear Schrödinger Equation

  • Elena Zemlyanaya
  • Nora Alexeeva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7125)

Abstract

We compile a chart of stationary and oscillatory two-soliton attractors on a plane of two parameters of the damped-driven nonlinear Schrödinger equation. Stable stationary and time-periodic complexes are shown to coexist.

Keywords

Nonlinear Schrödinger equation time-periodic solitons Newtonian iterative scheme numerical continuation stability bifurcations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexeeva, N.V., Barashenkov, I.V., Pelinovsky, D.E.: Dynamics of the parametrically driven NLS solitons beyond the onset of the oscillatory instability. Nonlinearity 12, 103–140 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alexeeva, N.V., Zemlyanaya, E.V.: Nodal Two-Dimensional Solitons in Nonlinear Parametric Resonance. In: Li, Z., Vulkov, L.G., Waśniewski, J. (eds.) NAA 2004. LNCS, vol. 3401, pp. 91–99. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Barashenkov, I.V., Alexeeva, N.V., Zemlyanaya, E.V.: Phys. Rev. Lett. 89, 104101 (2002)CrossRefGoogle Scholar
  4. 4.
    Barashenkov, I.V., Bogdan, M.M., Korobov, V.I.: Stability diagram of the phase-locked solitons in the parametrically driven, damped nonlinear Schrödinger equation. Europhys. Lett. 15, 113–118 (1991)CrossRefGoogle Scholar
  5. 5.
    Barashenkov, I.V., Zemlyanaya, E.V.: Soliton complexity in the damped-driven nonlinear Schrödinger equation: stationary, periodic, quasiperiodic complexes. Phys. Rev. E 83, 56610 (2011)CrossRefGoogle Scholar
  6. 6.
    Barashenkov, I.V., Zemlyanaya, E.V.: Stable complexes of parametrically driven, damped nonlinear Schrödinger solitons. Phys. Rev. Lett. 83, 2568–2571 (1999)CrossRefzbMATHGoogle Scholar
  7. 7.
    Barashenkov, I.V., Zemlyanaya, E.V.: Travelling solitons in the damped driven nonlinear Schrödinger equation. SIAM Journal of Applied Mathematics 64(3), 800–818 (2004)CrossRefzbMATHGoogle Scholar
  8. 8.
    Barashenkov, I.V., Zemlyanaya, E.V., Bär, M.: Travelling solitons in the parametrically driven nonlinear Schrödinger equation. Phys. Rev. E 64, 016603 (2001)CrossRefGoogle Scholar
  9. 9.
    Barashenkov, I.V., Zemlyanaya, E.V., van Heerden, T.C.: Time-periodic solitons in a damped-driven nonlinear Schrödinger equation. Phys. Rev. E 83, 056609 (2011)CrossRefGoogle Scholar
  10. 10.
    Bondila, M., Barashenkov, I.V., Bogdan, M.M.: Topography of attractors of the parametrically driven damped nonlinear Schrödinger equation. Physica D 87, 314–320 (1995)CrossRefzbMATHGoogle Scholar
  11. 11.
    Puzynin, I.V., et al.: Methods of computational physics for investigation of models of complex physical systems. Physics of Particles and Nuclei 38(1), 70–116 (2007)CrossRefGoogle Scholar
  12. 12.
    Seydel, R.: From equilibrium to chaos. Practical bifurcation and stability analysis. Elsevier Science Publishing Co. (1988)Google Scholar
  13. 13.
    Zemlyanaya, E.V., Alexeeva, N.V.: Oscillating solitons of the damped-driven NLS equation. Theor. and Math. Physics 159, 536–544 (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Zemlyanaya, E.V., Barashenkov, I.V.: Numerical study of the multisoliton complexes in the damped-driven NLS. Math. Modelling 16(3), 3–14 (2004) (Russian) zbMATHGoogle Scholar
  15. 15.
    Zemlyanaya, E.V., Barashenkov, I.V., Alexeeva, N.V.: Temporally-Periodic Solitons of the Parametrically Driven Damped Nonlinear Schrödinger Equation. In: Margenov, S., Vulkov, L.G., Waśniewski, J. (eds.) NAA 2008. LNCS, vol. 5434, pp. 139–150. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Elena Zemlyanaya
    • 1
  • Nora Alexeeva
    • 2
  1. 1.Laboratory of Information TechnologiesJoint Institute for Nuclear ResearchDubnaRussia
  2. 2.Department of MathematicsUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations