Second Order Scheme for Maxwell’s Equations with Discontinuous Electromagnetic Properties

  • Timur Z. Ismagilov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7125)


A second order finite volume scheme for numerical solution of non-stationary Maxwell’s equations with discontinuous dielectric permittivity and magnetic permeability on unstructured meshes is suggested. The scheme is based on Godunov, Lax-Wendroff, and Van Leer approaches. The distinctive feature of the considered scheme is calculation of derivatives that ensures approximation even near electromagnetic properties discontinuity. Numerical tests confirm the second order of approximation of the proposed scheme for cases of linear and curvilinear discontinuities.


Maxwell’s equations finite volume Godunov scheme discontinuous permittivity discontinuous permeability second order 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cioni, J.-P., Fezoui, L., Steve, H.: A Parallel Time-Domain Maxwell Solver Using Upwind Schemes and Triangular Meshes. IMPACT Comput. Sci. Eng. 5, 215–247 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Godunov, S.K.: A Difference Scheme for Numerical Solution of Discontinuos Solution of Hydrodynamic Equations. Math. Sbornik 47, 271–306 (1959)Google Scholar
  3. 3.
    Hermeline, F.: Two Coupled Particle-Finite Volume Methods Using Dalaunay-Voronoi Meshes for Approximation of Vlasov-Poisson and Vlasov-Maxwell Equations. J. Comput. Phys. 106, 1–18 (1993)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ismagilov, T.Z.: Parallel Algorithm for Numerical Solution of Three-dimensional Maxwell’s Equations with Discontinuous Dielectric Permittivity on Tetrahedral Meshes (In Russian). USATU Vestnik 14, 152–159 (2010)Google Scholar
  5. 5.
    Ismagilov, T.Z., Gorbachev, A.I.: Parallel Algorithm for Numerical Solution of Three-dimensional Maxwell’s Equations with Discontinuous Dielectric Permittivity on Prismatic Meshes (in Russian). Comp. Meth. and Progr. 12, 128–136 (2011)Google Scholar
  6. 6.
    Laub, A.J.: Matrix Analysis for Scientists and Engineers. SIAM, Philadelphia (2004)zbMATHGoogle Scholar
  7. 7.
    Lax, P.D., Wendroff, B.: Systems of Conservation Laws. Commun. Pure Appl. Math. 13, 217–237 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lebedev, A.S., Fedoruk, M.P., Shtyrina, O.V.: Finite-Volume Algorithm for Solving the Time-Dependent Maxwell Equations on Unstructured Meshes. Comp. Math. and Math. Phys. 47, 1286–1301 (2006)Google Scholar
  9. 9.
    Munz, C.-D., Schneider, R., Voss, U.: A Finite-Volume Method for the Maxwell Equations in the Time Domain. SIAM J. on Sci. Comp. 22, 449–475 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Shankar, V., Hall, W.F., Mohammadian, A.H.: A CFD-based Finite-Volume Procedure for Computational Electromagnetics - Interdisciplinary Applications of CFD Methods. AIAA A89-41776 18-02, 551–564 (1989)Google Scholar
  11. 11.
    Stratton, J.A.: Electromagnetic Theory. McGraw Hill, NewYork (1941)zbMATHGoogle Scholar
  12. 12.
    Sullivan, D.M.: Electromagnetic Simulation Using the Finite-Difference Time-Domain Method. Wiley-IEEE Press (2000)Google Scholar
  13. 13.
    Taflove, A., Hagness, S.C.: Computational Electrodynamics: the Finite-Difference Time-Domain Method. Artech House, Norwood (2005)zbMATHGoogle Scholar
  14. 14.
    Van Leer, B.: Towards the Ultimate Conservative Difference Scheme. A Second Order Sequel to Godunov’s Method. J. Comput. Phys. 32, 101–136 (1979)CrossRefGoogle Scholar
  15. 15.
    Yee, K.S.: Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media. IEEE Trans. Antennas Propagat. 14, 585–589 (1966)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Timur Z. Ismagilov
    • 1
  1. 1.Department of Information TechnologiesNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations