Numerical Study of Fluxon Solutions of Sine-Gordon Equation under the Influence of the Boundary Conditions

  • Pavlina Khristova Atanasova
  • Elena Zemlyanaya
  • Yury Shukrinov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7125)


The dependence on the boundary conditions of the fluxon solutions of a boundary problem for the sine-Gordon equation (SGE) is investigated numerically. Interconnection between fluxon and constant solutions is analyzed. Numerical results are discussed in the context of the long Josephson junction model.


long Josephson junction sine-Gordon equation Sturm-Liouville problem Newton’s method fluxon bifurcation numerical continuation 


  1. 1.
    Atanasova, P.K., Boyadjiev, T.L., Zemlyanaya, E.V., Shukrinov, Y.M.: Numerical Study of Magnetic Flux in the LJJ Model with Double Sine-Gordon Equation. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) NMA 2010. LNCS, vol. 6046, pp. 347–352. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Atanasova, P.K., Boyadjiev, T.L., Shukrinov, Y.M., Zemlyanaya, E.V.: Numerical investigation of the second harmonic effects in the LJJ (2010) arXiv:1005.5691v1Google Scholar
  3. 3.
    Atanasova, P.K., Boyadjiev, T.L., Shukrinov, Y.M., Zemlyanaya, E.V., Seidel, P.: Influence of Josephson current second harmonic on stability of magnetic flux in long junctions. J. Phys. Conf. Ser. 248, 012044 (2010) arXiv:1007.4778v1CrossRefGoogle Scholar
  4. 4.
    Atanasova, P.K., Zemlyanaya, E.V., Boyadjiev, T.L., Shukrinov, Y.M.: Numerical modeling of long Josephson junctions in the frame of double sine-Gordon equation. Mathematical Models and Computer Simulations 3(3), 388–397 (2011)CrossRefzbMATHGoogle Scholar
  5. 5.
    Galpern, Y.S., Filippov, A.T.: Joint solution states in inhomogeneous Josephson junctions. Sov. Phys. JETP 59, 894 (1984) (Russian)Google Scholar
  6. 6.
    Hu, X., Lin, S.Z.: Phase dynamics in a stack of inductively coupled intrinsic Josephson junctions and terahertz electromagnetic radiation. Supercond. Sci. Technol. 23, 053001 (2010)CrossRefGoogle Scholar
  7. 7.
    Koshelev, A.E.: Stability of dynamic coherent states in intrinsic Josephson-junction stacks near internal cavity resonance. Phys. Rev. B. 82, 174512 (2010)CrossRefGoogle Scholar
  8. 8.
    Krasnov, V.M.: THz emission from intrinsic Josephson junctions at zero magnetic field via breather auto-oscillations. Phys. Rev. B. 83, 174517 (2011)CrossRefGoogle Scholar
  9. 9.
    Puzynin, I.V., Boyadzhiev, T.L., Vinitskii, S.I., Zemlyanaya, E.V., Puzynina, T.P., Chuluunbaatar, O.: Methods of Computational Physics for Investigation of Models of Complex Physical Systems. Physics of Particles and Nuclei 38(1), 70–116 (2007)CrossRefGoogle Scholar
  10. 10.
    Zemlyanaya, E.V., Barashenkov, I.V.: Numerical study of the multisoliton complexes in the damped-driven NLS. Math. Modelling 16(3), 3–14 (2004) (Russian)zbMATHGoogle Scholar
  11. 11.
    Zemlyanaya, E.V., Puzynin, I.V., Puzynina, T.P.: PROGS2H4 – the software package for solving the boundary probem for the system of differential equations. JINR Comm. P11-97-414, Dubna, 18 (1997) (Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pavlina Khristova Atanasova
    • 1
  • Elena Zemlyanaya
    • 2
  • Yury Shukrinov
    • 2
  1. 1.Plovdiv University “Paisii Hilendarski”PlovdivBulgaria
  2. 2.Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations