Advertisement

Exactly Solvable Models for the Generalized Schrödinger Equation

  • Alina Suzko
  • Elena Velicheva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7125)

Abstract

The Darboux transformation operator technique is applied to the generalized Schrödinger equation. The procedure is used for constructing exactly solvable models. The influence of the distance between levels on the form of the potentials is investigated. In particular, symmetric and asymmetric double well and triple well potentials are generated.

Keywords

Generalized Schrödinger equation Darboux transformations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bastard, G.: Wave Mechanics Applied to Semiconductor Heterostructure, Les Editions de Physique, Les Ulis, France (1988)Google Scholar
  2. 2.
    Dekar, L., Chetouani, L., Hammann, T.F.: An Exactly Soluble Schrödinger Equation with Smooth Position-dependent Mass. J. Math. Phys. 39, 2551–2563 (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Dekar, L., Chetouani, L., Hammann, T.F.: Wave function for Smooth Potential and Mass Step. Phys. Rev. A 59, 107–112 (1999)CrossRefGoogle Scholar
  4. 4.
    Gu, C., Hu, H., Zhou, Z.: Darboux Transformations in Integrable Systems. Math. Phys. Studies, vol. 26. Springer, The Netherlands (2005)CrossRefzbMATHGoogle Scholar
  5. 5.
    Jha, P.K., Eleuch, H., Rostovtsev, Y.V.: Analytical solution to position dependent mass Schoedinger equation. Journal of Modern Optics 58, 652–656 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)CrossRefzbMATHGoogle Scholar
  7. 7.
    Milanović, V., Iconić, Z.: Generation of isospectral Combinations of the Potential and the Effective-mass Variations by Supersymmetric Quantum Mechanics. J. Phys. A: Math.Gen. 32, 7001–7015 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Plastino, A.R., et al.: Supersymmetric Approach to Quantum Systems with Position-dependent Effective Mass. Phys. Rev. A 60, 4318–4325 (1999)CrossRefGoogle Scholar
  9. 9.
    Quesne, C.: First-order Inertwining Operators and Position-dependent Mass Schrödinger Equations. Annals of Physics 321, 1221–1239 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Saleh, B.E.A., Teich, M.C.: Fundamentals of Photonics, p. 1201. Wiley (2007)Google Scholar
  11. 11.
    Suzko, A.A., Giorgadze, G.: Darboux transformations for the Generalized Schrödinger Equations. Physics of Atomic Nuclei 70, 607–610 (2007)CrossRefGoogle Scholar
  12. 12.
    Suzko, A.A., Schulze-Halberg, A.: Intertwining Operator Method and Supersymmetry for Effective mass Schrödinger Equations. Phys. Lett. A 372, 5865–5871 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Suzko, A.A., Schulze-Halberg, A.: Darboux transformations and Supersymmetry for the Generalized Schrödinger Equations in (1 + 1) Dimensions. J. Phys. A. 42, 295203–295214 (2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    Suzko, A., Velicheva, E.: Darboux Transformations in Integral and Differential Forms for Generalized Schrödinger Equations. Physics of Atomic Nuclei 74, 1106–1111 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alina Suzko
    • 1
  • Elena Velicheva
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations